9.已知抛物线C:y2=4(x-1),椭圆C1的左焦点及左准线与抛物线C的焦点F和准线l分别重合.
(1)设B是椭圆C1短轴的一个端点,线段BF的中点为P,求点P的轨迹C2的方程;
(2)如果直线x+y=m与曲线C2相交于不同两点M、N,求m的取值范围.
(1)解法一:由y2=4(x-1)知抛物线C的焦点F坐标为(2,0).准线l的方程为x=0.设动椭圆C1的短轴的一个端点B的坐标为(x1,y1)(x1>2,y1≠0),点P(x,y),
|
|
y=
,
y1=2y.
∴B(2x-2,2y)(x>2,y≠0).
设点B在准线x=0上的射影为点B′,椭圆的中心为点O′,则椭圆离心率e=
,由
=
,得
=
,
整理,化简得y2=x-2(y≠0),这就是点P的轨迹方程.
解法二:抛物线y2=4(x-1)焦点为F(2,0),准线l:x=0.设P(x,y),
∵P为BF中点,
∴B(2x-2,2y)(x>2,y≠0).设椭圆C1的长半轴、短半轴、半焦距分别为a、b、c,
则c=(2x-2)-2=2x-4,b2=(2y)2=4y2,
∵(-c)-(-
)=2,
∴
=2,
即b2=2c.∴4y2=2(2x-4),
即y2=x-2(y≠0),此即C2的轨迹方程.
|
|
y2=x-2
m>
.
而当m=2时,直线x+y=2过点(2,0),这时它与曲线C2只有一个交点,
∴所求m的取值范围是(
,2)∪(2,+∞).
7. 正方形ABCD中,一条边AB在直线y=x+4上,另外两顶点C、D在抛物线y2=x上,求正方形的面积.
解:设CD所在直线的方程为y=x+t,
|
|
y2=x,
x2+(2t-1)x+t2=0,
∴|CD|=![]()
=
.
又直线AB与CD间距离为|AD|=
,
∵|AD|=|CD|,
∴t=-2或-6.
从而边长为3
或5
.
面积S1=(3
)2=18,S2=(5
)2=50.
5.设直线l与椭圆交于P1(x1,y1)、P2(x2,y2),
将P1、P2两点坐标代入椭圆方程相减得直线l斜率
k=
=-
= -
=-
.
由点斜式可得l的方程为x+2y-8=0.
答案:x+2y-8=0