2.圆x2+y2-2mx-8y+13=0与直线x+y-1=0有公共点,则实数m的取值范围是( )
| A. | $[3-2{\sqrt{3}_{\;}}{,_{\;}}+∞)$ | B. | [3,4] | ||
| C. | $[-2{\sqrt{3}_{\;}}{,_{\;}}2\sqrt{3}]$ | D. | $(-{∞_{\;}}{,_{\;}}3-2\sqrt{3}]∪[3+2{\sqrt{3}_{\;}}{,_{\;}}+∞)$ |
1.过点(-10,10)且在x轴上截距是在y轴上截距的4倍的直线的方程为( )
| A. | x-y=0 | B. | x+4y-30=0 | ||
| C. | x+y=0 或x+4y-30=0 | D. | x+y=0或x-4y-30=0 |
20.若x、y满足约束条件$\left\{\begin{array}{l}3x+y-6≤0\\ x+y≥2\\ y≤2\end{array}\right.$,则x2+y2的最小值为( )
| A. | $\sqrt{2}$ | B. | 2 | C. | 4 | D. | 5 |
19.已知$f(x)=\left\{\begin{array}{l}2x-1,x≤4\\ \frac{x}{x-1},x>4\end{array}\right.$,则不等式f(m)<4的解集为( )
| A. | (-∞,4) | B. | (-4,2) | ||
| C. | $({\frac{5}{2}_{\;}}{,_{\;}}4)$ | D. | $(-{∞_{\;}}{,_{\;}}\frac{5}{2})∪({4_{\;}}{,_{\;}}+∞)$ |
18.函数f(x)=(x+1)2-2x的零点个数为( )
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
17.
已知函数$f(x)=cos(ωx+φ-\frac{π}{2})(ω>0\;,\;|φ|<\frac{π}{2})$的部分图象如图所示,则$y=f(x+\frac{π}{6})$取得最小值时x的集合为( )
| A. | $\{x|x=2kπ-\frac{π}{3}\;,\;k∈Z\}$ | B. | $\{x|x=2kπ-\frac{π}{6}\;,\;k∈Z\}$ | C. | $\{x|x=kπ-\frac{π}{3}\;,\;k∈Z\}$ | D. | $\{x|x=kπ-\frac{π}{6}\;,\;k∈Z\}$ |
16.在△ABC中已知三边a,b,c满足(a+b+c)(b+c-a)=bc,则∠A=( )
| A. | 120° | B. | 60° | C. | 45° | D. | 30° |
15.设D,E,F分别为△PQR三边QR,RP,PQ的中点,则$\overrightarrow{EQ}+\overrightarrow{FR}$=( )
| A. | $\overrightarrow{QR}$ | B. | $\overrightarrow{PD}$ | C. | $\frac{1}{2}\overrightarrow{QR}$ | D. | $\frac{1}{2}\overrightarrow{PD}$ |
14.不等式组$\left\{\begin{array}{l}x+y-\sqrt{2}≤0\\ x-y+\sqrt{2}≥0\\ y≥0\end{array}\right.$所围成的平面区域的面积为( )
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
13.设△ABC的角A,B,C所对的边分别是a,b,c,若A=60°,B=75°,c=8,则a=( )
0 241036 241044 241050 241054 241060 241062 241066 241072 241074 241080 241086 241090 241092 241096 241102 241104 241110 241114 241116 241120 241122 241126 241128 241130 241131 241132 241134 241135 241136 241138 241140 241144 241146 241150 241152 241156 241162 241164 241170 241174 241176 241180 241186 241192 241194 241200 241204 241206 241212 241216 241222 241230 266669
| A. | $4\sqrt{7}$ | B. | $4\sqrt{6}$ | C. | $4\sqrt{5}$ | D. | $4\sqrt{2}$ |