题目内容
2.圆x2+y2-2mx-8y+13=0与直线x+y-1=0有公共点,则实数m的取值范围是( )| A. | $[3-2{\sqrt{3}_{\;}}{,_{\;}}+∞)$ | B. | [3,4] | ||
| C. | $[-2{\sqrt{3}_{\;}}{,_{\;}}2\sqrt{3}]$ | D. | $(-{∞_{\;}}{,_{\;}}3-2\sqrt{3}]∪[3+2{\sqrt{3}_{\;}}{,_{\;}}+∞)$ |
分析 由圆心(m,4)到直线x+y-1=0的距离小于等于半径即可.
解答 解:圆x2+y2-2mx-8y+13=0⇒(x-m)2+(y-4)2=m2+3
由$\frac{|m+4-1|}{\sqrt{2}}≤\sqrt{{m}^{2}+3}$,解得m2-6m-3≥0⇒⇒m≥3+2$\sqrt{3}$或m$≤3-2\sqrt{3}$.
故选:D
点评 本题考查了直线与圆的位置关系,属于中档题.
练习册系列答案
相关题目
17.
已知函数$f(x)=cos(ωx+φ-\frac{π}{2})(ω>0\;,\;|φ|<\frac{π}{2})$的部分图象如图所示,则$y=f(x+\frac{π}{6})$取得最小值时x的集合为( )
| A. | $\{x|x=2kπ-\frac{π}{3}\;,\;k∈Z\}$ | B. | $\{x|x=2kπ-\frac{π}{6}\;,\;k∈Z\}$ | C. | $\{x|x=kπ-\frac{π}{3}\;,\;k∈Z\}$ | D. | $\{x|x=kπ-\frac{π}{6}\;,\;k∈Z\}$ |
4.设an=-3n2+15n-18,则数列{an}中的最大项的值是( )
| A. | $\frac{16}{3}$ | B. | $\frac{13}{3}$ | C. | 4 | D. | 0 |
8.
如图,A,B,C是一个无盖的正方体盒子展开后的平面图上的散点,则在正方体盒子中∠ABC=( )
| A. | 30° | B. | 45° | C. | 60° | D. | 90° |
9.下表提供了某厂生产某产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据,
(1)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$,
(2)根据(1)中求出的线性回归方程,预测生产20吨该产品的生产能耗是多少吨标准煤?
附:回归直线的斜率和截距的最小二乘估计分别为:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.
| x | 2 | 4 | 6 | 8 | 10 |
| y | 4 | 5 | 7 | 9 | 10 |
(2)根据(1)中求出的线性回归方程,预测生产20吨该产品的生产能耗是多少吨标准煤?
附:回归直线的斜率和截距的最小二乘估计分别为:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.