18.已知函数$f(x)=2lnx(\frac{1}{e}≤x≤{e^2})$,g(x)=mx+2,若f(x)与g(x)的图象上存在关于直线y=1对称的点,则实数m的取值范围是( )
| A. | $[-\frac{2}{3},-\frac{4}{e^2}]$ | B. | $[-\frac{2}{e},2e]$ | C. | $[-\frac{4}{e^2},2e]$ | D. | $[-\frac{4}{e^2},+∞]$ |
16.设F是双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左焦点,M在双曲线的右支上,且MF的中点恰为该双曲线的虚轴的一个端点,则C的渐近线方程为( )
| A. | $y=±\frac{1}{2}x$ | B. | y=±2x | C. | $y=±\frac{{\sqrt{5}}}{5}x$ | D. | $y=±\sqrt{5}x$ |
15.若圆C与y轴相切于点P(0,1),与x轴的正半轴交于A,B两点,且|AB|=2,则圆C的标准方程是( )
| A. | ${(x+\sqrt{2})^2}+{(y+1)^2}=2$ | B. | ${(x+1)^2}+{(y+\sqrt{2})^2}=2$ | C. | ${(x-\sqrt{2})^2}+{(y-1)^2}=2$ | D. | ${(x-1)^2}+{(y-\sqrt{2})^2}=2$ |
14.已知数列{an}是递增的等比数列,a1+a3+a5=21,a3=6,则a5+a7+a9=( )
| A. | $\frac{21}{4}$ | B. | $\frac{21}{2}$ | C. | 42 | D. | 84 |
13.若x是实数,i是虚数单位,且(1+xi)(x-i)=-i,则x=( )
| A. | -1 | B. | 0 | C. | 1 | D. | 2 |
12.已知集合A={x|x2-4x≤0,x∈Z},B={y|y=m2,m∈A},则A∩B=( )
| A. | {0,1,4} | B. | {0,1,6} | C. | {0,2,4} | D. | {0,4,16} |
10.
某市在对高三学生的4月理科数学调研测试的数据统计显示,全市10000名学生的成绩服从正态分布X~N(110,144),现从甲校100分以上的200份试卷中用系统抽样的方法抽取了20份试卷来分析,统计如下:
(注:表中试卷编号n1<n2<28<n4<n5<…<n20)
(1)列出表中试卷得分为126分的试卷编号(写出具体数据);
(2)该市又从乙校中也用系统抽样的方法抽取了20份试卷,将甲乙两校这40份试卷的得分制作了茎叶图(如图),试通过茎叶图比较两校学生成绩的平均分及分散程度(均不要求计算出具体值,给出结论即可);
(3)在第(2)问的前提下,从甲乙两校这40名学生中,从成绩在140分以上(含140分)的学生中任意抽取3人,该3人在全市前15名的人数记为ξ,求ξ的分布列和期望.
(附:若随机变量X服从正态分布N(μ,σ2),则P(μ-σ<X<μ+σ)=68.3%,P(μ-2σ<X<μ+2σ)=95.4%,P(μ-3σ<X<μ+3σ)=99.7%)
0 240414 240422 240428 240432 240438 240440 240444 240450 240452 240458 240464 240468 240470 240474 240480 240482 240488 240492 240494 240498 240500 240504 240506 240508 240509 240510 240512 240513 240514 240516 240518 240522 240524 240528 240530 240534 240540 240542 240548 240552 240554 240558 240564 240570 240572 240578 240582 240584 240590 240594 240600 240608 266669
| 试卷编号 | n1 | n2 | n3 | n4 | n5 | n6 | n7 | n8 | n9 | n10 |
| 试卷得分 | 109 | 118 | 112 | 114 | 126 | 128 | 127 | 124 | 126 | 120 |
| 试卷编号 | n11 | n12 | n13 | n14 | n15 | n16 | n17 | n18 | n19 | n20 |
| 试卷得分 | 135 | 138 | 135 | 137 | 135 | 139 | 142 | 144 | 148 | 150 |
(1)列出表中试卷得分为126分的试卷编号(写出具体数据);
(2)该市又从乙校中也用系统抽样的方法抽取了20份试卷,将甲乙两校这40份试卷的得分制作了茎叶图(如图),试通过茎叶图比较两校学生成绩的平均分及分散程度(均不要求计算出具体值,给出结论即可);
(3)在第(2)问的前提下,从甲乙两校这40名学生中,从成绩在140分以上(含140分)的学生中任意抽取3人,该3人在全市前15名的人数记为ξ,求ξ的分布列和期望.
(附:若随机变量X服从正态分布N(μ,σ2),则P(μ-σ<X<μ+σ)=68.3%,P(μ-2σ<X<μ+2σ)=95.4%,P(μ-3σ<X<μ+3σ)=99.7%)