题目内容
13.若x是实数,i是虚数单位,且(1+xi)(x-i)=-i,则x=( )| A. | -1 | B. | 0 | C. | 1 | D. | 2 |
分析 利用复数的运算法则、复数相等即可得出.
解答 解:∵(1+xi)(x-i)=-i,∴2x+x2i=0,可得2x=x2=0,
解得x=0.
故选:B.
点评 本题考查了复数的运算法则、复数相等,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
1.已知xy=1,且$0<y<\frac{{\sqrt{2}}}{2}$,则$\frac{{{x^2}+4{y^2}}}{x-2y}$的最小值为( )
| A. | 4 | B. | $\frac{9}{2}$ | C. | 2$\sqrt{2}$ | D. | 4$\sqrt{2}$ |
18.已知函数$f(x)=2lnx(\frac{1}{e}≤x≤{e^2})$,g(x)=mx+2,若f(x)与g(x)的图象上存在关于直线y=1对称的点,则实数m的取值范围是( )
| A. | $[-\frac{2}{3},-\frac{4}{e^2}]$ | B. | $[-\frac{2}{e},2e]$ | C. | $[-\frac{4}{e^2},2e]$ | D. | $[-\frac{4}{e^2},+∞]$ |
5.某汽车美容公司为吸引顾客,推出优惠活动:对首次消费的顾客,按200元/次收费,并注册成为会员,对会员逐次消费给予相应优惠,标准如下:
该公司从注册的会员中,随机抽取了100位统计他们的消费次数,得到数据如下:
假设汽车美容一次,公司成本为150元.根据所给数据,解答下列问题:
(Ⅰ)估计该公司一位会员至少消费两次的概率;
(Ⅱ)某会员仅消费两次,求这两次消费中,公司获得的平均利润;
(Ⅲ)假设每个会员最多消费5次,以事件发生的频率作为相应事件发生的概率,设该公司为一位会员服务的平均利润为X元,求X的分布列和数学期望E(X).
| 消费次数 | 第1次 | 第2次 | 第3次 | 第4次 | ≥5次 |
| 收费比例 | 1 | 0.95 | 0.90 | 0.85 | 0.80 |
| 消费次数 | 1次 | 2次 | 3次 | 4次 | 5次 |
| 频数 | 60 | 20 | 10 | 5 | 5 |
(Ⅰ)估计该公司一位会员至少消费两次的概率;
(Ⅱ)某会员仅消费两次,求这两次消费中,公司获得的平均利润;
(Ⅲ)假设每个会员最多消费5次,以事件发生的频率作为相应事件发生的概率,设该公司为一位会员服务的平均利润为X元,求X的分布列和数学期望E(X).
2.函数y=2x3-3x2+a的极小值是5,那么实数a等于( )
| A. | 6 | B. | 0 | C. | 5 | D. | 1 |