题目内容
15.若圆C与y轴相切于点P(0,1),与x轴的正半轴交于A,B两点,且|AB|=2,则圆C的标准方程是( )| A. | ${(x+\sqrt{2})^2}+{(y+1)^2}=2$ | B. | ${(x+1)^2}+{(y+\sqrt{2})^2}=2$ | C. | ${(x-\sqrt{2})^2}+{(y-1)^2}=2$ | D. | ${(x-1)^2}+{(y-\sqrt{2})^2}=2$ |
分析 根据题意画出图形,结合图形求出圆的半径和圆心坐标,即可写出圆的标准方程.
解答
解:如图所示,
由题意,圆C的半径为
r=$\sqrt{{1}^{2}{+1}^{2}}$=$\sqrt{2}$,
圆心坐标为($\sqrt{2}$,1),
∴圆C的标准方程为(x-$\sqrt{2}$)2+(y-1)2=2;
故选:C.
点评 本题考查了圆的标准方程的应用问题,是基础题.
练习册系列答案
相关题目
5.已知R是实数集,集合 A={x|22x+1≥16},B={x|(x-1)(x-3)<0,则(∁RA)∩B=( )
| A. | (1,2) | B. | [1,2] | C. | (1,3) | D. | (1,$\frac{3}{2}$) |
10.
某市在对高三学生的4月理科数学调研测试的数据统计显示,全市10000名学生的成绩服从正态分布X~N(110,144),现从甲校100分以上的200份试卷中用系统抽样的方法抽取了20份试卷来分析,统计如下:
(注:表中试卷编号n1<n2<28<n4<n5<…<n20)
(1)列出表中试卷得分为126分的试卷编号(写出具体数据);
(2)该市又从乙校中也用系统抽样的方法抽取了20份试卷,将甲乙两校这40份试卷的得分制作了茎叶图(如图),试通过茎叶图比较两校学生成绩的平均分及分散程度(均不要求计算出具体值,给出结论即可);
(3)在第(2)问的前提下,从甲乙两校这40名学生中,从成绩在140分以上(含140分)的学生中任意抽取3人,该3人在全市前15名的人数记为ξ,求ξ的分布列和期望.
(附:若随机变量X服从正态分布N(μ,σ2),则P(μ-σ<X<μ+σ)=68.3%,P(μ-2σ<X<μ+2σ)=95.4%,P(μ-3σ<X<μ+3σ)=99.7%)
| 试卷编号 | n1 | n2 | n3 | n4 | n5 | n6 | n7 | n8 | n9 | n10 |
| 试卷得分 | 109 | 118 | 112 | 114 | 126 | 128 | 127 | 124 | 126 | 120 |
| 试卷编号 | n11 | n12 | n13 | n14 | n15 | n16 | n17 | n18 | n19 | n20 |
| 试卷得分 | 135 | 138 | 135 | 137 | 135 | 139 | 142 | 144 | 148 | 150 |
(1)列出表中试卷得分为126分的试卷编号(写出具体数据);
(2)该市又从乙校中也用系统抽样的方法抽取了20份试卷,将甲乙两校这40份试卷的得分制作了茎叶图(如图),试通过茎叶图比较两校学生成绩的平均分及分散程度(均不要求计算出具体值,给出结论即可);
(3)在第(2)问的前提下,从甲乙两校这40名学生中,从成绩在140分以上(含140分)的学生中任意抽取3人,该3人在全市前15名的人数记为ξ,求ξ的分布列和期望.
(附:若随机变量X服从正态分布N(μ,σ2),则P(μ-σ<X<μ+σ)=68.3%,P(μ-2σ<X<μ+2σ)=95.4%,P(μ-3σ<X<μ+3σ)=99.7%)
7.下列判断正确的是( )
| A. | 若事件A与事件B互斥,则事件A与事件B对立 | |
| B. | 函数y=$\sqrt{{x}^{2}+9}+\frac{1}{\sqrt{{x}^{2}+9}}$(x∈R)的最小值为2 | |
| C. | 若直线(m+1)x+my-2=0与直线mx-2y+5=0互相垂直,则m=1 | |
| D. | “p∧q为真命题”是“p∨q为真命题”的充分不必要条件 |
4.已知集合M={x|x>2},N={x|1<x<3},则N∩∁RM=( )
| A. | {x|-2≤x<1} | B. | {x|-2≤x≤2} | C. | {x|1<x≤2} | D. | {x|x<2} |