6.若数列{an}是以2为首项,3为公比的等比数列,则a2+a4+a6+…+a2n的值为( )
| A. | 32n-1 | B. | $\frac{{3}^{2n}-1}{4}$ | C. | $\frac{3({3}^{2n}-1)}{4}$ | D. | $\frac{3({3}^{n}-1)}{4}$ |
5.F1,F2是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,过点F1(作斜率为k的直线交双曲线右支于点P,且∠F1PF2为锐角,M为线段F1P的中点,过坐标原点O作OT⊥F1P于点T,且|OM|-|TM|=b-a,则k=( )
| A. | $\frac{b}{a}$ | B. | $\frac{a}{b}$ | C. | $\frac{a}{\sqrt{{a}^{2}+{b}^{2}}}$ | D. | $\frac{b}{\sqrt{{a}^{2}+{b}^{2}}}$ |
4.已知向量$\overrightarrow{a}$=(m,n-1)与$\overrightarrow{b}$=(2,-1)平行,则$\sqrt{{m}^{2}+{n}^{2}}$的最小值为( )
| A. | $\frac{\sqrt{2}}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{\sqrt{5}}{5}$ | D. | $\frac{2\sqrt{5}}{5}$ |
2.设m=$\frac{200{8}^{\frac{1}{n}}-200{8}^{-\frac{1}{n}}}{2}$(n∈N*),则($\sqrt{1+{m}^{2}}$-m)n的值为( )
| A. | 2008-1 | B. | -2008-1 | C. | (-1)n2008 | D. | (-1)n2008-1 |
1.下列函数为偶函数的是( )
0 240379 240387 240393 240397 240403 240405 240409 240415 240417 240423 240429 240433 240435 240439 240445 240447 240453 240457 240459 240463 240465 240469 240471 240473 240474 240475 240477 240478 240479 240481 240483 240487 240489 240493 240495 240499 240505 240507 240513 240517 240519 240523 240529 240535 240537 240543 240547 240549 240555 240559 240565 240573 266669
| A. | f(x)=x-1 | B. | f(x)=x3+x | C. | f(x)=2x-2-x | D. | f(x)=2x+2-x |