题目内容

9.设函数f(x)=-$\frac{1}{x}$,在区间(0,+∞)内讨论下列问题:
(1)当x1=1及x2=3时,比较f(x1)与f(x2)的大小;
(2)任取x1,x2∈(0,+∞),且x1<x2,比较f(x1)与f(x2)的大小;
(3)由(2)所得的结论判断函数f(x)=-$\frac{1}{x}$在区间(0,+∞)上的单调性.

分析 (1)求出函数值比较即可;(2)通过作差法比较即可;(3)根据函数单调性的定义判断即可.

解答 解:(1)当x1=1及x2=3时,f(x1)=-1,f(x2)=-$\frac{1}{3}$,
故(x1)<f(x2);
(2)任取x1,x2∈(0,+∞),且x1<x2
则f(x1)-f(x2)=-$\frac{1}{{x}_{1}}$+$\frac{1}{{x}_{2}}$=$\frac{{x}_{1}{-x}_{2}}{{{x}_{1}x}_{2}}$<0,
即f(x1)<f(x2),
(3)由(2)得f(x)在(0,+∞)递增.

点评 本题考查了函数值的大小比较,考查定义法判断函数的单调性问题,是一道基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网