16.某中学为了解高一年级学生身体发育情况,对全校1400名高一年级学生按性别进行分层抽样检查,测得一组样本的身高(单位:cm)频数分布表如表1、表2.
表1:男生身高频数分布表
表2:女生身高频数分布表
(I)估计该校高一女生的人数:
(II)估计该校学生身高在[165,180)的概率;
(III)以样本频率为概率,现从高一年级的男生和女生中分别选出1人,设X表示身高在[165,180)的学生人数,求X的分布列及数学期望EX.
表1:男生身高频数分布表
| 身高(cm) | [160,165) | [165,170) | [170,175) | [175,180) | [180,185) | [185,190) |
| 频数 | 2 | 5 | 11 | 4 | 5 | 3 |
| 身高(cm) | [150,155) | [155,160) | [160,165) | [165,170) | [170,175) | [175,180) |
| 频数 | 2 | 8 | 15 | 12 | 2 | 1 |
(II)估计该校学生身高在[165,180)的概率;
(III)以样本频率为概率,现从高一年级的男生和女生中分别选出1人,设X表示身高在[165,180)的学生人数,求X的分布列及数学期望EX.
11.阅读下边的程序框图,运行相应的程序,输出的结果为( )

| A. | -2 | B. | $\frac{1}{2}$ | C. | -1 | D. | 2 |
9.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)左右焦点分别为F1,F2,渐近线为l1,l2,P位于l1在第一象限内的部分,若l2⊥PF1,l2∥PF2,则双曲线的离心率为( )
0 240195 240203 240209 240213 240219 240221 240225 240231 240233 240239 240245 240249 240251 240255 240261 240263 240269 240273 240275 240279 240281 240285 240287 240289 240290 240291 240293 240294 240295 240297 240299 240303 240305 240309 240311 240315 240321 240323 240329 240333 240335 240339 240345 240351 240353 240359 240363 240365 240371 240375 240381 240389 266669
| A. | 2 | B. | $\sqrt{3}$ | C. | $\sqrt{5}$ | D. | $\sqrt{2}$ |