19.若f(x)=x3-3x2-9x,当x∈[-2,2]时,f(x)的最小值是( )
| A. | 5 | B. | -2 | C. | -22 | D. | -27 |
18.已知A(0,-2),B(3,2)是函数f(x)图象上的两点,且f(x)是R上的增函数,则|f(x)|<2的解集为( )
| A. | (1,4) | B. | (-1,2) | C. | (0,3) | D. | (3,4) |
16.已知幂函数f(x)=(m-1)x${\;}^{\frac{1}{2}}$,则下列对f(x)的说法不正确的是( )
| A. | ?x0∈[0,+∞],使f(x0)>0 | B. | f(x)的图象过点(1,1) | ||
| C. | f(x)是增函数 | D. | ?x∈R,f(-x)+f(x)=0 |
15.已知全集U=R,集合A={x∈N|y=$\sqrt{4-x}$},B={y|y=2x-1},则A∩B=( )
| A. | {x|0≤x≤4} | B. | {1,2,3,4} | C. | {0,1,2,3,4} | D. | {0,1,2,3} |
14.规定:f″(x)=(f′(x))′,例如,f(x)=x2,f′(x)=2x,f″(x)=2,设g(x)=lnx,函数h(x)=mg″(x)+g′(x)一$\frac{π}{3}$,下列结论正确的是( )
| A. | 当m∈$(\frac{2}{3},+∞)$时,函数h(x)无零点 | |
| B. | 当m∈$(-∞,\frac{2}{3})$时,函数h(x)恰有一个零点 | |
| C. | 当m∈$[0,\frac{2}{3}]$时,函数h(x)恰有两个零点 | |
| D. | 当m∈$(-\frac{2}{3},\frac{2}{3})$时,函数h(x)恰有三个零点 |
13.设定义在R上的奇函数y=f(x),满足对任意t∈R都有$f({\frac{1}{2}-t})=f({\frac{1}{2}+t})$,且x∈[0,$\frac{1}{2}$]时,f(x)=-x2,则f(3)+f(-$\frac{3}{2}$)的值等于( )
| A. | -$\frac{1}{2}$ | B. | -$\frac{1}{3}$ | C. | -$\frac{1}{4}$ | D. | -$\frac{1}{5}$ |
12.若b-3n=5m(m,n∈N+),则b=( )
0 225333 225341 225347 225351 225357 225359 225363 225369 225371 225377 225383 225387 225389 225393 225399 225401 225407 225411 225413 225417 225419 225423 225425 225427 225428 225429 225431 225432 225433 225435 225437 225441 225443 225447 225449 225453 225459 225461 225467 225471 225473 225477 225483 225489 225491 225497 225501 225503 225509 225513 225519 225527 266669
| A. | 5${\;}^{-\frac{3n}{m}}$ | B. | 5${\;}^{-\frac{m}{3n}}$ | C. | 5${\;}^{\frac{3n}{m}}$ | D. | 5${\;}^{\frac{3n}{m}}$ |