ÌâÄ¿ÄÚÈÝ
17£®¸ø³öÏÂÁÐÃüÌ⣺¢ÙÃüÌâp£º?x0¡ÊR£¬x${\;}_{0}^{2}$£¾x0ÇÒx${\;}_{0}^{3}$£¼1£¬Ôò©Vp£º?x¡ÊR£¬x2¡ÜxÇÒx3¡Ý1£»
¢ÚÃüÌâ¡°Èôx2+y2=0£¬Ôòx£¬yÖÐÖÁÉÙÓÐÒ»¸öΪ0¡°µÄ·ñÃüÌâÊÇ¡°Èôx2+y2¡Ù0£¬Ôòx£¬y¶¼²»Îª0¡±£»
¢ÛÉèA={x|ax-1=0£¬a¡ÊR}£¬ÔòAÖÐÇ¡ÓÐÒ»¸öÔªËØ£»
¢ÜÇúÏßy=tanxµÄ¶Ô³ÆÖÐÐÄΪ£¨$\frac{¦Ð}{2}$+k¦Ð£¬0£©£¨k¡ÊZ£©£®
ÆäÖÐÕýÈ·µÄ¸÷ÊýÊÇ£¨¡¡¡¡£©
| A£® | 0 | B£® | 1 | C£® | 2 | D£® | 3 |
·ÖÎö ¢ÙÀûÓéVpµÄ¶¨Òå¼´¿ÉÅжϳö£»
¢ÚÀûÓ÷ñÃüÌâµÄ¶¨Òå¼´¿ÉÅжϳö£»
¢Ûµ±a=0ʱ£¬ax-1=0ÎÞʵÊý½â£¬´ËʱA=∅£¬¼´¿ÉÅжϳöÕýÎó£»
¢ÜÀûÓÃÇúÏßy=tanxµÄͼÏóÓëÐÔÖʼ´¿ÉÅжϳö£®
½â´ð ½â£º¢ÙÃüÌâp£º?x0¡ÊR£¬x${\;}_{0}^{2}$£¾x0ÇÒx${\;}_{0}^{3}$£¼1£¬Ôò©Vp£º?x¡ÊR£¬x2¡Üx»òx3¡Ý1£¬Òò´Ë´íÎó£»
¢ÚÀûÓ÷ñÃüÌâµÄ¶¨Òå¿ÉÖª£ºÕýÈ·£»
¢Ûµ±a=0ʱ£¬ax-1=0ÎÞʵÊý½â£¬´ËʱA=∅£¬Òò´Ë´íÎó£»
¢ÜÇúÏßy=tanxµÄ¶Ô³ÆÖÐÐÄΪ$£¨\frac{k¦Ð}{2}£¬0£©$£¨k¡ÊZ£©£¬¹Ê¢Ü´íÎó£®
ÕýÈ·µÄÃüÌâÖ»ÓТڣ®
¹ÊÑ¡£ºB£®
µãÆÀ ±¾Ì⿼²éÁ˼òÒ×Âß¼µÄÅж¨·½·¨¡¢º¯ÊýµÄÐÔÖÊ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
12£®Èôb-3n=5m£¨m£¬n¡ÊN+£©£¬Ôòb=£¨¡¡¡¡£©
| A£® | 5${\;}^{-\frac{3n}{m}}$ | B£® | 5${\;}^{-\frac{m}{3n}}$ | C£® | 5${\;}^{\frac{3n}{m}}$ | D£® | 5${\;}^{\frac{3n}{m}}$ |
2£®ÓÉÇúÏßy=x3ÓëÖ±Ïßy=4xËùΧ³ÉµÄÆ½ÃæÍ¼ÐεÄÃæ»ýΪ£¨¡¡¡¡£©
| A£® | 4 | B£® | 8 | C£® | 12 | D£® | 16 |
9£®º¯Êýy=2x-x2µÄ´óÖÂͼÏóÊÇ£¨¡¡¡¡£©
| A£® | B£® | C£® | D£® |