在平面直角坐标系xOy中,已知平面向量
=(a,0),
=(0,b),其中a,b为[-2,2]上的两个随机实数,定义平面上的点集Ω,Ω1,Φ分别为Ω={P|
=
+
},Ω1={Q|
|=|
|=
且|QP|<1,P∈Ω},Φ:Ω1∪{R|
<|
|<2}.若在Ω对应的平面区域内随机取一个点W,则点W落在Φ对应的平面区域内的概率为( )
| ON1 |
| ON2 |
| OP |
| ON1 |
| ON2 |
| QN1 |
| QN2 |
| 2 |
| 3 |
| OR |
A、
| ||
B、1-
| ||
C、
| ||
D、
|
若z∈C且|z+2-2i|=1,则|z-1-2i|的最小值是( )
| A、2 | B、3 | C、4 | D、5 |
已知f(x),g(x)都是定义在R上的函数,g(x)≠0,f′(x)g(x)<f(x)g′(x),f(x)=axg(x),
+
=
,则
=( )
| f(1) |
| g(1) |
| f(-1) |
| g(-1) |
| 10 |
| 3 |
| f(2) |
| g(2) |
| A、a2 | ||
B、
| ||
| C、9 | ||
D、
|
若三点A(2,3),B(3,4),C(a,b)共线,则有( )
| A、a=3,b=-5 |
| B、a-b+1=0 |
| C、2a-b=3 |
| D、a-2b=0 |
已知下列四个命题:真命题为( )
p1:?x0∈R,使得x02=x0-1;
p2:?x∈(0,
),都有sinx<x;
p3:?x∈R,都有2x>x2;
p4:?x0∈R,使得lnx02≥x0-1.
p1:?x0∈R,使得x02=x0-1;
p2:?x∈(0,
| π |
| 2 |
p3:?x∈R,都有2x>x2;
p4:?x0∈R,使得lnx02≥x0-1.
| A、p2,p4 |
| B、p1,p4 |
| C、p2,p3 |
| D、p1,p3 |
若函数f(x)=
的定义域是( )
| (x+1)0 | ||
|
| A、(-∞,-1) |
| B、(-1,0) |
| C、(-1,1) |
| D、(-∞,-1)∪(-1,0) |
sin570°=( )
A、
| ||||
B、-
| ||||
C、-
| ||||
D、
|
过点A(2,b)和点B(3,-2)的直线的倾斜角为
,则b的值是( )
| 3π |
| 4 |
| A、-1 | B、1 | C、-5 | D、5 |
给出以下命题:
①?x∈R,sinx+cosx>1;
②?x∈R,x2-x+1<0;
③“x>1”是“|x|>1”的充分不必要条件;
④若
•
=0,则|
|=|
|=0.
其中假命题的个数是( )
①?x∈R,sinx+cosx>1;
②?x∈R,x2-x+1<0;
③“x>1”是“|x|>1”的充分不必要条件;
④若
| a |
| b |
| a |
| b |
其中假命题的个数是( )
| A、0 | B、1 | C、2 | D、3 |
在△ABC中,若2cosAsinB=sinC,则△ABC的形状一定是( )
| A、等腰三角形 |
| B、直角三角形 |
| C、等腰直角三角形 |
| D、等边三角形 |