题目内容
若函数f(x)=
的定义域是( )
| (x+1)0 | ||
|
| A、(-∞,-1) |
| B、(-1,0) |
| C、(-1,1) |
| D、(-∞,-1)∪(-1,0) |
考点:函数的定义域及其求法
专题:函数的性质及应用
分析:根据函数成立的条件,即可求函数的定义域.
解答:
解:要使函数有意义,则
,
即
即x<0且x≠-1,
故函数的定义域为(-∞,-1)∪(-1,0),
故选:D.
|
即
|
即x<0且x≠-1,
故函数的定义域为(-∞,-1)∪(-1,0),
故选:D.
点评:本题主要考查函数定义域的求法,根据函数成立的条件是解决此类问题的关键.
练习册系列答案
相关题目
| f′(-3) |
| f′(1) |
| A、-1 | B、2 | C、-5 | D、-3 |
设全集 U={1,2,3,4,5,6,7},M={2,3,4,6},N={1,4,5},则(∁UM)∩N 等于( )
| A、{1,2,4,5,7} |
| B、{1,4,5} |
| C、{1,5} |
| D、{1,4} |
给出命题:若cosα=
,则α=
.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是( )
| 1 |
| 2 |
| π |
| 3 |
| A、3 | B、2 | C、1 | D、0 |
已知a=20.3,b=log0.50.24,c=0.32,则a,b,c的大小关系正确的是( )
| A、a<b<c |
| B、b<a<c |
| C、c<a<b |
| D、b<c<a |
在平面直角坐标系xOy中,已知平面向量
=(a,0),
=(0,b),其中a,b为[-2,2]上的两个随机实数,定义平面上的点集Ω,Ω1,Φ分别为Ω={P|
=
+
},Ω1={Q|
|=|
|=
且|QP|<1,P∈Ω},Φ:Ω1∪{R|
<|
|<2}.若在Ω对应的平面区域内随机取一个点W,则点W落在Φ对应的平面区域内的概率为( )
| ON1 |
| ON2 |
| OP |
| ON1 |
| ON2 |
| QN1 |
| QN2 |
| 2 |
| 3 |
| OR |
A、
| ||
B、1-
| ||
C、
| ||
D、
|
函数y=
的定义域为( )
| ||
| tanx |
| A、(0,3] | ||||
| B、(0,π) | ||||
C、(0,
| ||||
D、[0,
|