设振幅、相位、初相为方程y=Asin(ωx+φ)+b(A>0)的基本量,则方程y=3sin(2x-1)+4的基本量之和为( )
| A、4 | B、2x+3 |
| C、8 | D、2x+1 |
已知f(x)=2sin(x+
)cos(x+
),g(x)=1-2sin2(x+
),要得到g(x)的图象,只需把f(x)的图象( )
| π |
| 6 |
| π |
| 6 |
| π |
| 12 |
A、向左平移
| ||
B、向右平移
| ||
C、向左平移
| ||
D、向右平移
|
设z=x+y,其中实数x,y满足
,则z的最大值为( )
|
| A、6 | B、12 | C、0 | D、-6 |
对于实数x,y,“x2+y2>2”是“|x|>1且|y|>1”的( )
| A、充分而不必要条件 |
| B、必要而不充分条件 |
| C、充分必要条件 |
| D、既不充分也不必要条件 |
向量
=(1,2),
=(1,-λ),在区间[-5,5]上随机取一个数λ,使向量2
+
与
-
的夹角为锐角的概率为( )
| a |
| b |
| a |
| b |
| a |
| b |
A、
| ||
B、
| ||
C、
| ||
D、
|
设变量x、y满足约束条件:
,则目标函数z=5x+3y的最大值为( )
|
| A、18 | ||
| B、17 | ||
| C、27 | ||
D、
|
已知函数y=f(x)的定义域为(-π,π),且函数y=f(x-1)的图象关于直线x=1对称,当x∈(0,π)时,f(x)=-f′(
)sinx-πlnx(其中f′(x)是f(x)的导函数).若a=f(π0.2),b=f(logπ3),c=f(log
9),则a,b,c的大小关系式( )
| π |
| 2 |
| 1 |
| 2 |
| A、b>a>c |
| B、a>b>c |
| C、c>b>a |
| D、b>c>a |
一个几何体的三视图如图所示,则几何体的体积是( )

A、
| ||
B、
| ||
C、
| ||
| D、2 |
已知函数f(x)=(sinx+cosx)2-1,x∈R,则f(x)的最小正周期是( )
| A、2π | ||
B、
| ||
| C、π | ||
D、
|
已知函数f(x)(x∈R)满足f(2)=9,且f(x)的导函数f′(x)<
,则f(x)<x3+
x的解集为( )
| 1 |
| 2 |
| 1 |
| 2 |
| A、{x|-2<x<2} |
| B、{x|x<-2} |
| C、{x|x<-2或x>2} |
| D、{x|x>2} |