集合A={y|y=lgx,x>1},B={-2,-1,1,2},则∁RA∩B=( )
| A、[-2,-1] |
| B、(-∞,0] |
| C、{1,2} |
| D、{-2,-1} |
以抛物线y2=20x的焦点为圆心,并与直线y=-
x相切的圆的标准方程是( )
| 3 |
| 4 |
| A、(x-4)2+y2=25 |
| B、(x-5)2+y2=16 |
| C、(x-4)2+y2=7 |
| D、(x-5)2+y2=9 |
在△ABC中,角A,B,C所对的边的长分别为a,b,c,A=60°,C=45°,a=30,则c等于( )
A、15
| ||
B、30
| ||
C、10
| ||
D、15
|
若复数
(a∈R,i为虚数单位)是纯虚数,则实数a的值为( )
| a+i |
| 1+i |
| A、0 | B、-2 | C、-1 | D、1 |
设x、y满足约束条件
,若目标函数z=ax+by(a>0,b>0)的最大值为2,当
+
的最小值为m时,则y=sin(mx+
)的图象向右平移
后的表达式为( )
|
| 1 |
| a |
| 1 |
| b |
| π |
| 3 |
| π |
| 6 |
| A、y=sinx | ||
| B、y=sin2x | ||
C、y=sin(x+
| ||
D、y=sin(2x+
|
甲、乙、丙、丁等六人站成一排,要求甲、乙均不与丙相邻且丁必须排在首位,则不同的排法种数为( )
| A、72种 | B、52种 |
| C、36种 | D、24种 |
函数y=2
-x的单调递增区间为( )
| x |
| A、[0,1] |
| B、(-∞,1] |
| C、[1,+∞) |
| D、(0,+∞) |
已知
=a+i(a,b∈R),其中i为虚数单位,则a+b=( )
| 1-bi |
| 1+2i |
| A、-4 | B、4 | C、-10 | D、10 |
设全集U是实数集R,M={x|x2>1},N={x|0<x<2},则集合N∩∁UM=( )
| A、{x|1<x<2} |
| B、{x|0<x≤1} |
| C、{x|0≤x≤1} |
| D、{x|0<x<1} |
将函数y=cos(
-2x)的图象向右平移
个单位后所得的图象的一个对称轴是( )
| π |
| 6 |
| π |
| 12 |
A、x=
| ||
B、x=
| ||
C、x=
| ||
D、x=
|