定义:平面内两条相交但不垂直的数轴构成的坐标系(两条数轴的原点重合且单位长度相同)称为平面斜坐标系;在平面斜坐标系xOy中,若
=xe1+ye2(其中e1、e2分别是斜坐标系x轴、y轴正方向上的单位向量,x,y∈R,O为坐标系原点),则有序数对(x,y)称为点P的斜坐标.在平面斜坐标系xOy中,若∠xOy=120°,点A的斜坐标为(5,3),直线l过点A且其向上方向与x轴正方向之间所成的角为60°,则直线l在斜坐标系xOy中的方程是( )
| OP |
| A、x-y+2=0 | ||||
| B、x-y-2=0 | ||||
C、
| ||||
D、x-
|
△ABC中,若
=
,则该三角形一定是( )
| a |
| cosB |
| b |
| cosA |
| A、等腰三角形但不是直角三角形 |
| B、直角三角形但不是等腰三角形 |
| C、等腰直角三角形 |
| D、等腰三角形或直角三角形 |
已知点M的球坐标为(1,
,
),则它的直角坐标为( )
| π |
| 3 |
| π |
| 6 |
A、(1,
| ||||||||||
B、(
| ||||||||||
C、(
| ||||||||||
D、(
|
用反证法证明命题:设x、y、z∈R+,a=x+
,b=y+
,c=z+
,则a、b、c三个数至少有一个不小于2,下列假设中正确的是( )
| 1 |
| y |
| 1 |
| z |
| 1 |
| x |
| A、假设a,b,c三个数至少有一个不大于2 |
| B、假设a,b,c三个数都不小于2 |
| C、假设a,b,c三个数至多有一个不大于2 |
| D、假设a,b,c三个数都小于2 |
若f(x)=(m-1)x2+2mx+3为偶函数,则f(x)在(-5,-2)上的单调性是( )
| A、增函数 | B、减函数 |
| C、先增后减 | D、先减后增 |
f(x)=
,则f(
)=( )
|
| 1 |
| 2 |
A、
| ||
B、-
| ||
C、-
| ||
D、
|
把曲线C1:
(θ为参数)上各点的横坐标压缩为原来的
,纵坐标压缩为原来的
,得到的曲线C2为( )
|
| 1 |
| 4 |
| ||
| 4 |
| A、12x2+4y2=1 | ||
B、4x2+
| ||
C、x2+
| ||
| D、3x2+4y2=4 |
(文科)sin
π等于( )
| 2009 |
| 4 |
| A、1 | ||||
| B、-1 | ||||
C、
| ||||
D、-
|
已知函数f(x)=sinx+cosα,则f′(α)的值为( )
| A、sinα |
| B、cosα |
| C、sinα+cosα |
| D、cosα-sinα |