题目内容

已知点M的球坐标为(1,
π
3
π
6
),则它的直角坐标为(  )
A、(1,
π
3
π
6
B、(
3
4
3
4
1
2
C、(
3
4
3
4
1
2
D、(
3
4
3
4
3
2
考点:球坐标刻画点的位置
专题:选作题,坐标系和参数方程
分析:利用球坐标系(r,θ,φ)与直角坐标系(x,y,z)的转换关系:x=rsinθcosφ,y=rsinθsinφ,z=rcosθ,即可得出结论.
解答: 解:设点M的直角坐标为(x,y,z),
∵点M的球坐标为(1,
π
3
π
6
),
∴x=sin
π
3
cos
π
6
=
3
4
,y=sin
π
3
sin
π
6
=
3
4
,z=cos
π
3
=
1
2

∴M的直角坐标为(
3
4
3
4
1
2
).
故选:B.
点评:假设P(x,y,z)为空间内一点,则点P也可用这样三个有次序的数r,φ,θ来确定,其中r为原点O与点P间的距离,θ为有向线段OP与z轴正向的夹角,φ为从正z轴来看自x轴按逆时针方向转到OM所转过的角,这里M为点P在xOy面上的投影.这样的三个数r,φ,θ叫做点P的球面坐标,显然,这里r,φ,θ的变化范围为r∈[0,+∞),φ∈[0,2π],θ∈[0,π],
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网