题目内容
已知点M的球坐标为(1,
,
),则它的直角坐标为( )
| π |
| 3 |
| π |
| 6 |
A、(1,
| ||||||||||
B、(
| ||||||||||
C、(
| ||||||||||
D、(
|
考点:球坐标刻画点的位置
专题:选作题,坐标系和参数方程
分析:利用球坐标系(r,θ,φ)与直角坐标系(x,y,z)的转换关系:x=rsinθcosφ,y=rsinθsinφ,z=rcosθ,即可得出结论.
解答:
解:设点M的直角坐标为(x,y,z),
∵点M的球坐标为(1,
,
),
∴x=sin
cos
=
,y=sin
sin
=
,z=cos
=
∴M的直角坐标为(
,
,
).
故选:B.
∵点M的球坐标为(1,
| π |
| 3 |
| π |
| 6 |
∴x=sin
| π |
| 3 |
| π |
| 6 |
| 3 |
| 4 |
| π |
| 3 |
| π |
| 6 |
| ||
| 4 |
| π |
| 3 |
| 1 |
| 2 |
∴M的直角坐标为(
| 3 |
| 4 |
| ||
| 4 |
| 1 |
| 2 |
故选:B.
点评:假设P(x,y,z)为空间内一点,则点P也可用这样三个有次序的数r,φ,θ来确定,其中r为原点O与点P间的距离,θ为有向线段OP与z轴正向的夹角,φ为从正z轴来看自x轴按逆时针方向转到OM所转过的角,这里M为点P在xOy面上的投影.这样的三个数r,φ,θ叫做点P的球面坐标,显然,这里r,φ,θ的变化范围为r∈[0,+∞),φ∈[0,2π],θ∈[0,π],
练习册系列答案
相关题目
若双曲线x2+
=1的一条渐近线的倾斜角α∈(0,
),则m的取值范围是( )
| y2 |
| m |
| π |
| 3 |
| A、(-3,0) | ||||
B、(-
| ||||
| C、(0,3) | ||||
D、(-
|
若在区域
内任取一点P,则点P落在单位圆x2+y2=1内的概率( )
|
A、
| ||
B、
| ||
C、
| ||
D、
|
在[0,2]上任取两个数a,b,则函数f(x)=x2+
x+b无零点的概率为( )
| a |
A、
| ||
B、
| ||
C、
| ||
D、
|
已知函数f(x)=
,则下列命题正确的是( )
|
| A、若y=f1(x)(x≤0)是增函数,y=f2(x)(x>0)是减函数,则y=f(x)存在最大值 |
| B、若y=f(x)存在最大值,则y=f1(x)(x≤0)是增函数,y=f2(x)(x>0)是减函数 |
| C、若y=f1(x)(x≤0),y=f2(x)(x>0)均为减函数,则y=f(x)是减函数 |
| D、若y=f(x)是减函数,则y=f1(x)(x≤0),y=f2(x)(x>0)均为减函数 |