设全集U={0,1,2,3,4,5,6,7,8,9},集合A={1,2,3,4,5},集合B={1,3,5,7,9},则∁UA∩∁UB为( )
| A、{6,8} |
| B、{0,6,8} |
| C、{1,3,5} |
| D、{1,2,3,4,5,7,9} |
实数a,b,c成等比数列,那么关于x的方程ax2+bx+c=0( )
| A、一定没有实根 |
| B、一定有两个相同的实根 |
| C、一定有两个不相同的实根 |
| D、以上三种情况都可能出现 |
若S={1,2,3,4,5},M={1,3,4},N={2,4,5},则(∁SM)∩(∁SN)等于( )
| A、{1,3} | B、∅ |
| C、{4} | D、{2,5} |
| π |
| 2 |
A、(4,
| ||
B、(4,
| ||
C、(2,
| ||
D、(2,
|
命题甲:(
)x,21-x,2 x2成等比数列,命题乙:lgx,lg(x+1),lg(x+3)成等差数列,则甲是乙的( )
| 1 |
| 2 |
| A、充分不必要条件 |
| B、必要不充分条件 |
| C、充分必要条件 |
| D、既不充分也不必要条件 |
若a,b,c是互不相等的实数,且a,b,c成等差数列,c,a,b成等比数列,则a:b:c是( )
| A、-2:1:4 |
| B、1:2:3 |
| C、2:3:4 |
| D、-1:1:3 |
已知集合A={x|x2-2x-3<0},B={x||x|<2},则A∩B等于( )
| A、{x|-1<x<2} |
| B、{x|2<x<3} |
| C、{x|x<-1} |
| D、{x|x>3} |
定义:eiθ=cosθ+isinθ(i为虚数单位),若ei
+1-
i=eiα,则α角可能是( )
| 2π |
| 3 |
| 3 |
A、
| ||
B、
| ||
C、
| ||
D、
|
设函数f(x)、g(x)分别是定义在R上的奇函数和偶函数,f′(x),g′(x)分别是f(x),g(x)的导函数,当x<0时,f′(x)•g(x)+f(x)•g′(x)>0且g(-3)=0,则f(x)•g(x)<0的解集是( )
| A、(-3,0)∪(0,3) |
| B、(-3,0)∪(3,+∞) |
| C、(-∞,-3)∪(3,+∞) |
| D、(-∞,-3)∪(0,3) |
若sin(α+
)=
,则cos2α=( )
| π |
| 2 |
| 1 |
| 2 |
A、
| ||||
B、-
| ||||
C、
| ||||
D、-
|