题目内容
已知集合A={x|x2-2x-3<0},B={x||x|<2},则A∩B等于( )
| A、{x|-1<x<2} |
| B、{x|2<x<3} |
| C、{x|x<-1} |
| D、{x|x>3} |
考点:交集及其运算
专题:集合
分析:求出A与B中不等式的解集,确定出A与B,找出两集合的交集即可.
解答:
解:由A中不等式变形得:(x-3)(x+1)<0,
解得:-1<x<3,即A={x|-1<x<3};
由B中不等式解得:-2<x<2,即B={x|-2<x<2},
则A∩B={x|-1<x<2}.
故选:A.
解得:-1<x<3,即A={x|-1<x<3};
由B中不等式解得:-2<x<2,即B={x|-2<x<2},
则A∩B={x|-1<x<2}.
故选:A.
点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
练习册系列答案
相关题目
已知集合M={1,2,3,4},M∩N={2,3},则集合N可以为( )
| A、{1,2,3} |
| B、{1,3,4} |
| C、{1,2,4} |
| D、{2,3,5} |
若双曲线
-y2=1上的点到右准线的距离是到右焦点距离的
,则m=( )
| x2 |
| m |
| 1 |
| 2 |
A、
| ||
B、
| ||
C、
| ||
D、
|
设全集为U,B∩∁UA=B,则A∩B为( )
| A、∅ | B、A |
| C、B | D、∁UB |
实数a,b,c成等比数列,那么关于x的方程ax2+bx+c=0( )
| A、一定没有实根 |
| B、一定有两个相同的实根 |
| C、一定有两个不相同的实根 |
| D、以上三种情况都可能出现 |
已知f(x)是定义在(-∞,+∞)上的偶函数,且在(-∞,0)上是增函数,设a=f(ln
),b=f(log53),c=f(0.4-1.3),则a、b、c的大小关系是( )
| 1 |
| 4 |
| A、c<b<a |
| B、a<c<b |
| C、b<a<c |
| D、c<a<b |
已知点A(1,3),B(4,-1),则下面与向量
垂直的单位向量是( )
| AB |
A、(
| ||||
B、(
| ||||
C、(
| ||||
D、(-
|