题目内容
若S={1,2,3,4,5},M={1,3,4},N={2,4,5},则(∁SM)∩(∁SN)等于( )
| A、{1,3} | B、∅ |
| C、{4} | D、{2,5} |
考点:交、并、补集的混合运算
专题:集合
分析:由全集S,以及M与N,分别求出M与N的补集,找出两补集的交集即可.
解答:
解:∵S={1,2,3,4,5},M={1,3,4},N={2,4,5},
∴∁SM={2,5},∁SN={1,3},
则(∁SM)∩(∁SN)=∅.
故选:B.
∴∁SM={2,5},∁SN={1,3},
则(∁SM)∩(∁SN)=∅.
故选:B.
点评:此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.
练习册系列答案
相关题目
取棱长为a的正方体的一个顶点,过从此顶点出发的三条棱的中点作截面,依次进行下去,对正方体的所有顶点都如此操作,所得的各截面与正方体各面共同围成一个多面体,则此多面体:①有12个顶点;②有24条棱;③有12个面;④表面积为3a2;⑤体积为
a3. 以上结论正确的是( )
| 5 |
| 6 |
| A、①②⑤ | B、①②③ |
| C、②④⑤ | D、②③④⑤ |
若函数f(x),g(x)的定义域和值域都是R,则f(x)>g(x)(x∈R)成立的充要条件是( )
| A、?x0∈R,f(x0)>g(x0) |
| B、有无穷多个x∈R,使得f(x)>g(x) |
| C、?x∈R,f(x)>g(x)+1 |
| D、R中不存在x使得f(x)≤g(x) |
已知全集U=R,集合A={x|x2<4},B={x|x2-2x>0},则A∩(∁UB)等于( )
| A、(-∞,2) |
| B、(0,2) |
| C、[0,2) |
| D、[0,2] |
定义:eiθ=cosθ+isinθ(i为虚数单位),若ei
+1-
i=eiα,则α角可能是( )
| 2π |
| 3 |
| 3 |
A、
| ||
B、
| ||
C、
| ||
D、
|
i是虚数单位,i+
的值等于( )
| 1 |
| i |
| A、0 | B、2i | C、2 | D、-2i |
M是椭圆
+
=1上一点,F1,F2是其左右焦点,则满足∠F1MF2=
的点M的个数是( )
| x2 |
| 16 |
| y2 |
| 9 |
| π |
| 2 |
| A、0 | B、1 | C、2 | D、4 |