命题“对任意的x∈R,都有2x2-x+1≥0”的否定是( )
| A、对任意的x∈R,都有2x2-x+1<0 |
| B、存在x0∈R,使得2x02-x0+1<0 |
| C、不存在x0∈R,使得2x02-x0+1<0 |
| D、存在x0∈R,使得2x02-x0+1≥0 |
定义域为R的函数y=f(x),若对任意两个不相等的实数x1,x2,都有x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),则称函数为“H函数”,现给出如下函数:
①y=-x3+x+1②y=3x-2(sinx-cosx)③y=ex+1④f(x)=
其中为“H函数”的有( )
①y=-x3+x+1②y=3x-2(sinx-cosx)③y=ex+1④f(x)=
|
其中为“H函数”的有( )
| A、①② | B、③④ | C、②③ | D、①②③ |
已知条件p:x=2,条件q:(x-2)(x-3)=0,则p是q的( )
| A、充分不必要条件 |
| B、必要不充分条件 |
| C、充要条件 |
| D、既不充分也不必要的条件 |
已知函数f(x)=
的定义域为[2,3],则实数m的值为( )
| -x2+mx-6 |
| A、5 | B、-5 | C、10 | D、-10 |
函数y=
的定义域是( )
| ||
| x-2 |
A、[
| ||
B、[
| ||
C、(
| ||
| D、(-∞,2)∪(2,+∞) |
函数f(x)=(x2-2x-3)(x2-2x-5)的值域是( )
| A、(-∞,-1] |
| B、[-1,+∞) |
| C、[24,+∞) |
| D、(24,+∞) |