解 (1)ξ的可能取值为-300,-100,100,300. 2分
16.(本小题满分8分)某同学参加科普知识竞赛,需回答三个问题,竞赛规则规定:每题回答正确得100分,回答不正确得-100分.假设这名同学每题回答正确的概率均为0.8,且各题回答正确与否相互之间没有影响.
(1)求这名同学回答这三个问题的总得分ξ的概率分布和数学期望;
(2)求这名同学总得分不为负分(即ξ≥0)的概率.
分析 本题主要考查离散型随机变量的分布列、数学期望等概念,以及运用统计知识解决实际问题的能力.求解的关键是搞清随机变量ξ的可能取值,即所得分数.其中,答对0道题得-300分,答对1道题得100-200=-100分,答对2道题得2×100-100=100分,答对3道题得300分.
总分不为负共包括:总分为100分,总分为300分两种情况.
Dx2=(1 000-1 400)2×0.4+(1 400-1 400)2×0.3+(1 800-1 400)2×0.2+(2 200-1 400)2×0.1=112 000. 6分
因为Ex1=Ex2,Dx1<Dx2,所以两家单位的工资均值相等,但甲单位不同职位的工资相对集中,乙单位不同职位的工资相对分散.这样,如果你希望不同职位的工资差距小一些,就选择甲单位;如果你希望不同职位的工资差距大一些,就选择乙单位. 8分
Ex2=1 000×0.4+1 400×0.3+1 800×0.2+2 200×0.1=1 400,
Dx1=(1 200-1 400)2×0.4+(1 400-1 400)2×0.3+(1 600-1 400)2×0.2+(1 800-1 400)2×0.1=40 000; 3分
Ex1=1 200×0.4+1 400×0.3+1 600×0.2+1 800×0.1=1 400,
0.1
根据工资待遇的差异情况,你愿意选择哪家单位?
解 根据月工资的分布列,计算得
0.2
0.3
0.4