2.(本小题满分12分)

    函数在区间(0,+∞)内可导,导函数是减函数,且

是曲线在点()得的切线方程,并设函数

  (Ⅰ)用表示m;

  (Ⅱ)证明:当

  (Ⅲ)若关于的不等式上恒成立,其中a、b为实数,

     求b的取值范围及a与b所满足的关系.

本小题考查导数概念的几何意义,函数极值、最值的判定以及灵活运用数形结合的思想判断函数之间的大小关系.考查学生的学习能力、抽象思维能力及综合运用数学基本关系解决问题的能力.满分12分

  (Ⅰ)解:…………………………………………2分

  (Ⅱ)证明:令

     因为递减,所以递增,因此,当

     当.所以唯一的极值点,且是极小值点,可知

最小值为0,因此…………………………6分

  (Ⅲ)解法一:是不等式成立的必要条件,以下讨论设此条件成立.

     对任意成立的充要条件是

    

    另一方面,由于满足前述题设中关于函数的条件,利用(II)的结果可知,的充要条件是:过点(0,)与曲线相切的直线的斜率大于,该切线的方程为

    于是的充要条件是…………………………10分

    综上,不等式对任意成立的充要条件是

                          ①

    显然,存在a、b使①式成立的充要条件是:不等式

    有解、解不等式②得              ③

    因此,③式即为b的取值范围,①式即为实数在a与b所满足的关系.…………12分

(Ⅲ)解法二:是不等式成立的必要条件,以下讨论设此条件成立.

    对任意成立的充要条件是

     ………………………………………………………………8分

    令,于是对任意成立的充要条件是

     由

    当时,,所以,当时,取最小值.因此成立的充要条件是,即………………10分

    综上,不等式对任意成立的充要条件是

         ①

    显然,存在a、b使①式成立的充要条件是:不等式  ②

    有解、解不等式②得

    因此,③式即为b的取值范围,①式即为实数在a与b所满足的关系.…………12分

1.(本小题满分14分)

已知椭圆的左、右焦点分别是F1(-c,0)、F2(c,0),Q是椭圆外的动点,满足点P是线段F1Q与该椭圆的交点,点T在线段F2Q上,并且满足

  (Ⅰ)设为点P的横坐标,证明

  (Ⅱ)求点T的轨迹C的方程;

  (Ⅲ)试问:在点T的轨迹C上,是否存在点M,

     使△F1MF2的面积S=若存在,求∠F1MF2

        的正切值;若不存在,请说明理由.

本小题主要考查平面向量的概率,椭圆的定义、标准方程和有关性质,轨迹的求法和应用,以及综合运用数学知识解决问题的能力.满分14分.

(Ⅰ)证法一:设点P的坐标为

由P在椭圆上,得

,所以 ………………………3分

证法二:设点P的坐标为

证法三:设点P的坐标为椭圆的左准线方程为

    由椭圆第二定义得,即

    由,所以…………………………3分

(Ⅱ)解法一:设点T的坐标为

      当时,点(,0)和点(-,0)在轨迹上.

当|时,由,得.

,所以T为线段F2Q的中点.

在△QF1F2中,,所以有

综上所述,点T的轨迹C的方程是…………………………7分

解法二:设点T的坐标为时,点(,0)和点(-,0)在轨迹上.

    当|时,由,得.

    又,所以T为线段F2Q的中点.

    设点Q的坐标为(),则

    因此              ①

    由     ②

    将①代入②,可得

    综上所述,点T的轨迹C的方程是……………………7分



 
  (Ⅲ)解法一:C上存在点M()使S=的充要条件是

    

    由③得,由④得  所以,当时,存在点M,使S=

    当时,不存在满足条件的点M.………………………11分

    当时,

    由

   

    ,得

解法二:C上存在点M()使S=的充要条件是



 
    

    由④得  上式代入③得

    于是,当时,存在点M,使S=

    当时,不存在满足条件的点M.………………………11分

    当时,记

    由,所以…………14分

 0  52726  52734  52740  52744  52750  52752  52756  52762  52764  52770  52776  52780  52782  52786  52792  52794  52800  52804  52806  52810  52812  52816  52818  52820  52821  52822  52824  52825  52826  52828  52830  52834  52836  52840  52842  52846  52852  52854  52860  52864  52866  52870  52876  52882  52884  52890  52894  52896  52902  52906  52912  52920  447348 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网