(二)加法原理与乘法原理

这是两个基本原理,它们不仅是推导排列数公式、组合数公式的基础,而且可以直接运用它们去解决某些问题.两个原理的区别是前者与分类有关,与元素的顺序有关;后者与分步有关,与元素的顺序无关;.

例1  (1)有红、黄、白色旗子各n面(n>3),取其中一面、二面、三面组成纵列信号,可以有多少不同的信号?

(2) 有1元、5元、10元的钞票各一张,取其中一张或几张,能组成多少种不同的币值?

   (1) 解  因为纵列信号有上、下顺序关系,所以是一个排列问题,信号分一面、二面、三面三种情况(三类),各类之间是互斥的,所以用加法原理:①升一面旗,共有3种信号;②升二面旗,要分两步,连续完成每一步,信号方告完成,而每步又是独立的事件,故用乘法原理,因同色旗子可重复使用,故共有3×3种信号;③升三面旗,有3×3×3种信号.所以共有39种信号.

(2) 解法  计算币值与顺序无关,所以是一个组合问题,有取一张、二张、三张、四张四种情况,它们彼此是互斥的,用加法原理.因此,不同币值有 =15(种)

评析  (1) 排列、组合的区别在于顺序性,前者“有序”而后者“无序”;加法原理与乘法原理的区别在于联斥性,前者“斥”--互斥独立事件,后者“联”--相依事件.因而有“顺序”决“问题”,“联斥”定“原理”的说法.

(2)加、乘原理是排列、组合问题的理论依据,在分析问题和指导解题中起着关键作用,运用加法原理的关键在于恰当地分类(分情况),要使所分类别既不遗漏,也不重复;运用乘法原理的关键在于分步,要正确设计分步的程序,使每步之间既互相联系,又彼此独立.

 0  446698  446706  446712  446716  446722  446724  446728  446734  446736  446742  446748  446752  446754  446758  446764  446766  446772  446776  446778  446782  446784  446788  446790  446792  446793  446794  446796  446797  446798  446800  446802  446806  446808  446812  446814  446818  446824  446826  446832  446836  446838  446842  446848  446854  446856  446862  446866  446868  446874  446878  446884  446892  447348 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网