(一)知识准备

我们今天研究的课题是“点与圆、直线与圆以及圆与圆的位置关系”,为了更好地讲解这个课题,我们先复习归纳一下点与圆、直线与圆以及圆与圆的位置关系中的一些知识.

1.点与圆的位置关系

设圆C∶(x-a)2+(y-b)2=r2,点M(x0,y0)到圆心的距离为d,则有:

(1)d>r 点M在圆外;

(2)d=r 点M在圆上;

(3)d<r 点M在圆内.

2.直线与圆的位置关系

设圆 C∶(x-a)2+(y-b)=r2,直线l的方程为Ax+By+C=0,圆心(a,

判别式为△,则有:

(1)d<r 直线与圆相交;

(2)d=r 直线与圆相切;

(3)d<r 直线与圆相离,即几何特征;

或(1)△>0 直线与圆相交;

(2)△=0 直线与圆相切;

(3)△<0 直线与圆相离,即代数特征,

3.圆与圆的位置关系

设圆C1:(x-a)2+(y-b)2=r2和圆C2:(x-m)2+(y-n)2=k2(k≥r),且设两圆圆心距为d,则有:

(1)d=k+r 两圆外切;

(2)d=k-r 两圆内切;

(3)d>k+r 两圆外离;

(4)d<k+r 两圆内含;

(5)k-r<d<k+r 两圆相交.

4.其他

(1)过圆上一点的切线方程:

①圆x2+y2=r2,圆上一点为(x0,y0),则此点的切线方程为x0x+y0y=r2(课本命题).

②圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2(课本命题的推广).

(2)相交两圆的公共弦所在直线方程:

设圆C1∶x2+y2+D1x+E1y+F1=0和圆C2∶x2+y2+D2x+E2y+F2=0,若两圆相交,则过两圆交点的直线方程为(D1-D2)x+(E1-E2)y+(F1-F2)=0.

(3)圆系方程:

①设圆C1∶x2+y2+D1x+E1y+F1=0和圆C2∶x2+y2+D2x+E2y+F2=0.若两圆相交,则过交点的圆系方程为x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+F2)=0(λ为参数,圆系中不包括圆C2,λ=-1为两圆的公共弦所在直线方程).

②设圆C∶x2+y2+Dx+Ey+F=0与直线l:Ax+By+C=0,若直线与圆相交,则过交点的圆系方程为x2+y2+Dx+Ey+F+λ(Ax+By+C)=0(λ为参数).

 0  445213  445221  445227  445231  445237  445239  445243  445249  445251  445257  445263  445267  445269  445273  445279  445281  445287  445291  445293  445297  445299  445303  445305  445307  445308  445309  445311  445312  445313  445315  445317  445321  445323  445327  445329  445333  445339  445341  445347  445351  445353  445357  445363  445369  445371  445377  445381  445383  445389  445393  445399  445407  447348 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网