9、如图8-1所示,质量为m=0.4kg的滑块,在水平外力F作用下,在光滑水平面上从A点由静止开始向B点运动,到达B点时外力F突然撤去,滑块随即冲上半径为 R=0.4米的1/4光滑圆弧面小车,小车立即沿光滑水平面PQ运动。设:开始时平面AB与圆弧CD相切,A、B、C三点在同一水平线上,令AB连线为X轴,且AB=d=0.64m,滑块在AB面上运动时,其动量随位移的变化关系为P=1.6kgm/s,小车质量M=3.6kg,不计能量损失。求:

(1)滑块受水平推力F为多大? (2)滑块通过C点时,圆弧C点受到压力为多大? (3)滑块到达D点时,小车速度为多大? (4)滑块能否第二次通过C点? 若滑块第二次通过C点时,小车与滑块的速度分别为多大? (5)滑块从D点滑出再返回D点这一过程中,小车移动距离为多少? (g取10m/s2)

  分析与解:(1)由P=1.6=mv,代入x=0.64m,可得滑块到B点速度为:

    VB=1.6/m=1.6=3.2m/s

   A→B,由动能定理得:FS=mVB2

    所以 F=mVB2/(2S)=0.4X3.22/(2X0.64)=3.2N

(2)滑块滑上C立即做圆周运动,由牛顿第二定律得:

    N-mg=mVC2/R 而VC=VB 则   N=mg+mVC2/R=0.4X10+0.4X3.22/0.4=14.2N

(3)滑块由C→D的过程中,滑块和小车组成系统在水平方向动量守恒,由于滑块始终紧贴着小车一起运动,在D点时,滑块和小车具有相同的水平速度VDX 。由动量守恒定律得:mVC=(M+m)VDX

所以 VDX=mVC/(M+m)=0.4X3.2/(3.6+0.4)=0.32m/s

(4)滑块一定能再次通过C点。因为滑块到达D点时,除与小车有相同的水平速度VDX外,还具有竖直向上的分速度VDY,因此滑块以后将脱离小车相对于小车做竖直上抛运动(相对地面做斜上抛运动)。因题中说明无能量损失,可知滑块在离车后一段时间内,始终处于D点的正上方(因两者在水平方向不受力作用,水平方向分运动为匀速运动,具有相同水平速度), 所以滑块返回时必重新落在小车的D点上,然后再圆孤下滑,最后由C点离开小车,做平抛运动落到地面上。由机械能守恒定律得:

   mVC2=mgR+(M+m)VDX2+mVDY2

所以

以滑块、小车为系统,以滑块滑上C点为初态,滑块第二次滑到C点时为末态,此过程中系统水平方向动量守恒,系统机械能守恒(注意:对滑块来说,此过程中弹力与速度不垂直,弹力做功,机械能不守恒)得:

   mVC=mVC‘+MV 即mVC2=mVC2+MV2

上式中VC‘、V分别为滑块返回C点时,滑块与小车的速度,

     V=2mVC/(M+m)=2X0.4X3.2/(3.6+0.4)=0.64m/s

   VC’=(m-M)VC/(m+M)=(0.4-3.6)X3.2/(0.4+3.6)=-2.56m/s(与V反向)

(5)滑块离D到返回D这一过程中,小车做匀速直线运动,前进距离为:

   △S=VDX2VDY/g=0.32X2X1.1/10=0.07m

8、一内壁光滑的环形细圆管,位于竖直平面内,环的半径为R(比细管的内径大得多。在圆管中有两个直径与细管内径相同的小球(可视为质点)。A球的质量为m1,B球的质量为m2。它们沿环形圆管顺时针运动,经过最低点时的速度都为V0。设A球运动到最低点时,B球恰好运动到最高点,若要此时两球作用于圆管的合力为零,那么m1、m2、R与V0应满足的关系式是     

分析与解:如图7-1所示,A球运动到最低点时速度为V0,A球受到向下重力mg和细管向上弹力N1的作用,其合力提供向心力。那么,N1-m1g=m1 [1]

这时B球位于最高点,速度为V1,B球受向下重力m2g和细管弹力N2作用。球作用于细管的力是N1、N2的反作用力,要求两球作用于细管的合力为零,即要求N2与N1等值反向,N1=N2 [2], 且N2方向一定向下,对B球:N2+m2g=m2 [3]

B球由最高点运动到最低点时速度为V0,此过程中机械能守恒:

m2V12+m2g2R=m2V02 [4]

由[1][2][3][4]式消去N1、N2和V1后得到m1、m2、R与V0满足的关系式是:

(m1-m2)+(m1+5m2)g=0 [5]

说明:(1)本题不要求出某一物理量,而是要求根据对两球运动的分析和受力的分析,在建立[1]-[4]式的基础上得到m1、m2、R与V0所满足的关系式[5]。(2)由题意要求两球对圆管的合力为零知,N2一定与N1方向相反,这一点是列出[3]式的关键。且由[5]式知两球质量关系m1<m2

2、如图2-1所示,轻质长绳水平地跨在相距为2L的两个小定滑轮A、B上,质量为m的物块悬挂在绳上O点,O与A、B两滑轮的距离相等。在轻绳两端C、D分别施加竖直向下的恒力F=mg。先托住物块,使绳处于水平拉直状态,由静止释放物块,在物块下落过程中,保持C、D两端的拉力F不变。

(1)当物块下落距离h为多大时,物块的加速度为零?

(2)在物块下落上述距离的过程中,克服C端恒力F做功W为多少?

(3)求物块下落过程中的最大速度Vm和最大距离H?

分析与解:物块向下先作加速运动,随着物块的下落,两绳间的夹角逐渐减小。因为绳子对物块的拉力大小不变,恒等于F,所以随着两绳间的夹角减小,两绳对物块拉力的合力将逐渐增大,物块所受合力逐渐减小,向下加速度逐渐减小。当物块的合外力为零时,速度达到最大值。之后,因为两绳间夹角继续减小,物块所受合外力竖直向上,且逐渐增大,物块将作加速度逐渐增大的减速运动。当物块下降速度减为零时,物块竖直下落的距离达到最大值H。

当物块的加速度为零时,由共点力平衡条件可求出相应的θ角,再由θ角求出相应的距离h,进而求出克服C端恒力F所做的功。

对物块运用动能定理可求出物块下落过程中的最大速度Vm和最大距离H。

(1)当物块所受的合外力为零时,加速度为零,此时物块下降距离为h。因为F恒等于mg,所以绳对物块拉力大小恒为mg,由平衡条件知:2θ=120°,所以θ=60°,由图2-2知:h=L*tg30°=L               [1]

(2)当物块下落h时,绳的C、D端均上升h’,由几何关系可得:h’=-L   [2]

克服C端恒力F做的功为:W=F*h’             [3]

由[1]、[2]、[3]式联立解得:W=(-1)mgL

(3)出物块下落过程中,共有三个力对物块做功。重力做正功,两端绳子对物块的拉力做负功。两端绳子拉力做的功就等于作用在C、D端的恒力F所做的功。因为物块下降距离h时动能最大。由动能定理得:mgh-2W=       [4]

将[1]、[2]、[3]式代入[4]式解得:Vm=

当物块速度减小为零时,物块下落距离达到最大值H,绳C、D上升的距离为H’。由动能定理得:mgH-2mgH’=0,又H’=-L,联立解得:H=

 0  136998  137006  137012  137016  137022  137024  137028  137034  137036  137042  137048  137052  137054  137058  137064  137066  137072  137076  137078  137082  137084  137088  137090  137092  137093  137094  137096  137097  137098  137100  137102  137106  137108  137112  137114  137118  137124  137126  137132  137136  137138  137142  137148  137154  137156  137162  137166  137168  137174  137178  137184  137192  447348 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网