三水中学高二年级2009年3月阶段性测试
理科数学试题
命题人:曾仕欠
第I卷(选择题 共40分)
一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.下列表述正确的是( )
①归纳推理是由部分到整体的推理;②演绎推理是由一般到特殊的推理;③类比推理是由特殊到特殊的推理。
A、①②③ B、②③ C、①② D、①③
2.一个运动物体的位移与时间方程为其中S的单位是米,t的单位是秒,那么物体在3秒末的瞬时速度是( )
A
3.按照下列三种化合物的结构式及分子式的规律,写出第种化合物的分子式是( )
A、 B、
C、 D、
4.函数的导数是
A. B. C. D.
5.函数的图象与x轴及直线围成图形(如图阴影部分)的面积为,则( )
A. B. C. D.
6.
A. B. C. D.
7.函数递增区间是
A. B. C. D.
8.定义在R上的函数满足.为的导函数,已知函数的图象如右图所示.若两正数满足,则的取值范围是( )
A. B.
C. D.
第Ⅱ卷(非选择题 共110分)
二、填空题:本大题共6小题,每小题5分,共30分.将答案填在题中的横线上.
9.用反证法证明“如果是三角形的最小角,则”,应假设 ▲
10.在下面演绎推理中:“,又”,大前提是:
▲ 。
11.若函数的导数图象如右图,
则当 ▲ 时,取极大值
12.由曲线和轴围成的封闭图形面积为 ▲
13. 观察下列不等式:≥,≥ ,≥,…,由此猜测第个不等式为 ▲ .()
14.“三角形的三条中线交于一点,而且这一点到顶点的距离等于它到对边中点距离的2倍”。试类比:四面体的四条中线(顶点到对面三角形重心的连线段)交于一点,而且这一点到顶点的距离等于它到对面重心距离的▲ 倍.
三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.
15、(本小题满分12分)设斜率为的直线与曲线相切于。(1)求切点坐标;(2)求切线方程。
16. (本小题满分12分)函数在上单调递增,求的范围.
17. (本小题满分14分)在计算“”时,先改写第k项:由此得
…
相加,得
(1)类比上述方法,请你计算“”,的结果.
(2)试用数学归纳法证明你得到的等式.
18、(本小题满分14分)一个特殊模具容器横断面如图所示:内壁是抛物线的一部分,外壁是等腰梯形ABEF的两腰AF、BE及底AB围成。已知EF = 8厘米,AB = 3厘米,点O到EF的距离是8厘米,BE
所在直线与抛物线相切于点E .
(1)求容器的高 ;
(2)求这个容器横断面的面积(阴影部分)
19. (本小题满分14分) 已知函数,在处取得极值为2.
(1)求函数的解析式;
(2)求函数的递增区间;
(3)若P(x0,y0)为图象上的任意一点,直线l与的图象相切于点P,求直线l的斜率的取值范围
20. (本小题满分14分)已知函数
(1)求的单调区间;
(2)若至少存在一点,使得成立,求实数的取值范围.
(3)是否存在实数,使方程有四个不同的实根?若存在,求出的取值范围;若不存在,说明理由.
三水中学高二年级2009年3月阶段性测试
理科数学试题答案
题号
1
2
3
4
5
6
7
8
答案
A
C
B
A
C
C
D
C
9.假设;10;11. ;12.
13.;14.3
15、解:设切点为,函数的导数为
切线的斜率, ----------------4分
得,代入到得,即,-------8分
。 ---------------12分
16.解: --------------6分(没有等号扣1分)
----------------11分
---------------12分
17.解(1) 先改写第k项:
由此得
…
相加,得
----------------7分
(2)证:当时,左边=,右边
当时等式成立 ----------------8分
假设当时, 成立
那么,当时,
----------------12分
即当时,等式也成立 ----------------13分
由(1),(2)得证成立
----------------14分
18.解:(1)依题意知,点E的横坐标为4 ,又点E在抛物线
上,点E的纵坐标是即
直线BE与抛物线相切
直线BE的斜率
直线BE的方程是即
由AB=3得B的横坐标是 ,又点B在直线上
点B的纵坐标是
即容器的高为10厘米 -------------7分
(2)易得点F的横坐标是 ,由图形知,横断面面积
这个容器横断面的面积平方厘米 ----------------14分
19.解:(1)已知函数,1分
又函数在处取得极值2,
-----------------------------------2分
即 -------------6分
(2)由,得,即
所以的单调增区间为(-1,1) ------------- 10分
(3)
直线l的斜率
即 令,--------12分
则
即直线l的斜率k的取值范围是-------------14分
20.解:(1)函数定义域为 ---------1分
---------3分
因 故函数上是增函数.(闭区间也对)
,所以,函数上是减函数.
的递增区间是,递减区间是 ------------5分
(2)由(1)知当时,取最小值3, ------------7分
又 ------------8分
若至少存在一点,使得成立,只需
------------10分
(3)方程有四个不同的实根,等价当时有两个不同的实根 ------------11分
当变化时,、的变化关系如下表:
(0,1)
1
(1,+)
-
0
+
ㄋ
极小值3
ㄊ
据此可画出的简图如下, ------------12分
故存在,使原方程有4个不同实根.
------------14分