摘要:所在直线与抛物线相切于点E .
网址:http://m.1010jiajiao.com/timu_id_340184[举报]
过抛物线y2=2px (p>0)焦点F的直线与抛物线交于A、B两点,M、N为准线l上两点,AM⊥l,BN⊥l,M、N为垂足,C为线段AB中点,D为线段MN中点,CD交抛物线于点E,下列结论中正确的是 .(把你认为正确的序号都填上)
①+
为定值
②以AB为直径的圆与l相切
③以MN为直径的圆与AB所在直线相切
④以AF为直径的圆与y轴相切
⑤E为线段CD中点
查看习题详情和答案>>![精英家教网](http://thumb.zyjl.cn/pic3/upload/images/201106/18/8db3e0e4.png)
| ||
2 |
(1)经过A、B两点分别作抛物线C的切线l1,l2,切线l1与l2相交于点M.证明:
MF |
MA |
MF |
MB |
(2)椭圆E上是否存在一点M',经过点M'作抛物线C的两条切线M'A',M'B'(A',B'为切点),使得直线A'B'过点F?若存在,求出抛物线C与切线M'A',M'B'所围成图形的面积;若不存在,请说明理由. 查看习题详情和答案>>
已知抛物线C:x2=4y的焦点为F,过点F作直线l交抛物线C于A、B两点;椭圆E的中心在原点,焦点在x轴上,点F是它的一个顶点,且其离心率e=
.
(1)求椭圆E的方程;
(2)经过A、B两点分别作抛物线C的切线l1、l2,切线l1与l2相交于点M.证明:AB⊥MF;
(3)椭圆E上是否存在一点M′,经过点M′作抛物线C的两条切线M′A′、M′B(A′、B′为切点),使得直线A′B′过点F?若存在,求出抛物线C与切线M′A′、M′B所围成图形的面积;若不存在,试说明理由. 查看习题详情和答案>>
| ||
2 |
(1)求椭圆E的方程;
(2)经过A、B两点分别作抛物线C的切线l1、l2,切线l1与l2相交于点M.证明:AB⊥MF;
(3)椭圆E上是否存在一点M′,经过点M′作抛物线C的两条切线M′A′、M′B(A′、B′为切点),使得直线A′B′过点F?若存在,求出抛物线C与切线M′A′、M′B所围成图形的面积;若不存在,试说明理由. 查看习题详情和答案>>