通过对以上几个问题的分析,我们对算法有了一个初步的了解.在解决某些问题时,需要设计出一系列可操作或可计算的步骤,通过实施这些步骤来解决问题,通常把这些步骤称为解决这些问题的算法.

在数学中,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题的程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.

问题:我们要解决解决一类问题,我们可以抽象出其解题步骤或计算序列,他们有什么样的要求?

(1)算法与一般意义上具体问题的解法既有联系,又有区别,它们之间是一般和特殊的关系,也是抽象与具体的关系。算法的获得要借助一般意义上具体问题的求解方法,而任何一个具体问题都可以利用这类问题的一般算法来解决。

(2)算法的五个特征

①有穷性:一个算法的步骤序列是有限的,它应在有限步操作之后停止,而不能是无限地执行下去。

②确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可的。

③逻辑性:算法从初始步骤开始,分为若干个明确的步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题。

④不唯一性:求解某一个问题的算法不一定只有唯一的一个,可以有不同的算法。

⑤普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限的、事先设计好的步骤加以解决。

3.重视对数学思想、方法进行归纳提炼,达到优化解题思维、简化解题过程

①方程思想,解析几何的题目大部分都以方程形式给定直线和圆锥曲线,因此把直线与圆锥曲线相交的弦长问题利用韦达定理进行整体处理,就简化解题运算量.

②用好函数思想方法

对于圆锥曲线上一些动点,在变化过程中会引入一些相互联系、相互制约的量,从而使一些线的长度及abce之间构成函数关系,函数思想在处理这类问题时就很有效。

③掌握坐标法

坐标法是解析几何的基本方法,因此要加强坐标法的训练。

④对称思想

由于圆锥曲线和圆都具有对称性质,可使分散的条件相对集中,减少一些变量和未知量,简化计算,提高解题速度,促成问题的解决。

⑤参数思想

参数思想是辩证思维在数学中的反映,一旦引入参数,用参数来划分运动变化状态,利用圆、椭圆、双曲线上点用参数方程形式设立或(x0y0)即可将参量视为常量,以相对静止来控制变化,变与不变的转化,可在解题过程中将其消去,起到“设而不求”的效果。

⑥转化思想

解决圆锥曲线时充分注意直角坐标与极坐标之间有联系,直角坐标方程与参数方程,极坐标之间联系及转化,利用平移得出新系坐标与原坐标之间转化,可达到优化解题的目的。

除上述常用数学思想外,数形结合、分类讨论、整体思想、构造思想也是不可缺少的思想方法,复习也应给予足够的重视.

 0  439207  439215  439221  439225  439231  439233  439237  439243  439245  439251  439257  439261  439263  439267  439273  439275  439281  439285  439287  439291  439293  439297  439299  439301  439302  439303  439305  439306  439307  439309  439311  439315  439317  439321  439323  439327  439333  439335  439341  439345  439347  439351  439357  439363  439365  439371  439375  439377  439383  439387  439393  439401  447090 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网