4.(08广东深圳)22.如图9,在平面直角坐标系中,二次函数的图象的顶点为D点,与y轴交于C点,与x轴交于A、B两点, A点在原点的左侧,B点的坐标为(3,0),OB=OC ,tan∠ACO=. (1)求这个二次函数的表达式.

(2)经过C、D两点的直线,与x轴交于点E,在该抛物线上是否存在这样的点F,使以点A、C、E、F为顶点的四边形为平行四边形?若存在,请求出点F的坐标;若不存在,请说明理由.

(3)若平行于x轴的直线与该抛物线交于M、N两点,且以MN为直径的圆与x轴相切,求该圆半径的长度.

(4)如图10,若点G(2,y)是该抛物线上一点,点P是直线AG下方的抛物线上一动点,当点P运动到什么位置时,△APG的面积最大?求出此时P点的坐标和△APG的最大面积.

(08广东深圳22题解析)22.(1)方法一:由已知得:C(0,-3),A(-1,0) …1分

将A、B、C三点的坐标代入得       ……………………2分

解得:                     ……………………3分

所以这个二次函数的表达式为:      ……………………3分

方法二:由已知得:C(0,-3),A(-1,0)      ………………………1分

设该表达式为:            ……………………2分

将C点的坐标代入得:               ……………………3分

所以这个二次函数的表达式为:      ……………………3分

(注:表达式的最终结果用三种形式中的任一种都不扣分)

(2)方法一:存在,F点的坐标为(2,-3)       ……………………4分

理由:易得D(1,-4),所以直线CD的解析式为:

∴E点的坐标为(-3,0)                ……………………4分

由A、C、E、F四点的坐标得:AE=CF=2,AE∥CF

∴以A、C、E、F为顶点的四边形为平行四边形

∴存在点F,坐标为(2,-3)              ……………………5分

方法二:易得D(1,-4),所以直线CD的解析式为:

∴E点的坐标为(-3,0)                ………………………4分

∵以A、C、E、F为顶点的四边形为平行四边形

∴F点的坐标为(2,-3)或(―2,―3)或(-4,3)  代入抛物线的表达式检验,只有(2,-3)符合∴存在点F,坐标为(2,-3)       ………………………5分

(3)如图,①当直线MN在x轴上方时,设圆的半径为R(R>0),则N(R+1,R),

代入抛物线的表达式,解得  …………6分

②当直线MN在x轴下方时,设圆的半径为r(r>0),

则N(r+1,-r),

代入抛物线的表达式,解得  ………7分

∴圆的半径为.  ……………7分

(4)过点P作y轴的平行线与AG交于点Q,

易得G(2,-3),直线AG为.……………8分

设P(x),则Q(x,-x-1),PQ

         ……………………9分

时,△APG的面积最大

此时P点的坐标为.    ……………………10分

2.(08甘肃白银等9市)28.(12分)如图20,在平面直角坐标系中,四边形OABC是矩形,点B的坐标为(4,3).平行于对角线AC的直线m从原点O出发,沿x轴正方向以每秒1个单位长度的速度运动,设直线m与矩形OABC的两边分别交于点M、N,直线m运动的时间为t(秒).

(1) 点A的坐标是__________,点C的坐标是__________;

 (2) 当t=    秒或    秒时,MN=AC;

(3) 设△OMN的面积为S,求S与t的函数关系式;

(4) 探求(3)中得到的函数S有没有最大值?若有,求出最大值;若没有,要说明理由.

(08甘肃白银等9市28题解析)28. 本小题满分12分

解:(1)(4,0),(0,3);  ·················································································· 2分

(2) 2,6;  ·········································································································  4分

(3) 当0<t≤4时,OM=t.

由△OMN∽△OAC,得

ON=,S=.  ····································  6分

当4<t<8时,

如图,∵ OD=t,∴ AD= t-4.

方法一:

由△DAM∽△AOC,可得AM=,∴ BM=6-. ····························  7分

由△BMN∽△BAC,可得BN==8-t,∴ CN=t-4. ··································  8分

S=矩形OABC的面积-Rt△OAM的面积- Rt△MBN的面积- Rt△NCO的面积

=12--(8-t)(6-)-

=.  ··························································································· 10分

方法二:

易知四边形ADNC是平行四边形,∴ CN=AD=t-4,BN=8-t.·································· 7分

由△BMN∽△BAC,可得BM==6-,∴ AM=.······ 8分

以下同方法一.

 (4) 有最大值.

方法一:

当0<t≤4时,

∵ 抛物线S=的开口向上,在对称轴t=0的右边, S随t的增大而增大,

∴ 当t=4时,S可取到最大值=6; ················ 11分

当4<t<8时,

∵ 抛物线S=的开口向下,它的顶点是(4,6),∴ S<6.

综上,当t=4时,S有最大值6. ·······································································  12分

方法二:

∵ S=

∴ 当0<t<8时,画出S与t的函数关系图像,如图所示. ······························  11分

显然,当t=4时,S有最大值6.  ···································································  12分

说明:只有当第(3)问解答正确时,第(4)问只回答“有最大值”无其它步骤,可给1分;否则,不给分.

1.(08福建莆田)26.(14分)如图:抛物线经过A(-3,0)、B(0,4)、C(4,0)三点.

  (1) 求抛物线的解析式.

  (2)已知AD = AB(D在线段AC上),有一动点P从点A沿线段AC以每秒1个单位长度的速度移动;同时另一个动点Q以某一速度从点B沿线段BC移动,经过t 秒的移动,线段PQ被BD垂直平分,求t的值;

 (3)在(2)的情况下,抛物线的对称轴上是否存在一点M,使MQ+MC的值最小?若存在,请求出点M的坐标;若不存在,请说明理由。

(注:抛物线的对称轴为)

   

(08福建莆田26题解析)26(1)解法一:设抛物线的解析式为y = a (x +3 )(x - 4)

   因为B(0,4)在抛物线上,所以4 = a ( 0 + 3 ) ( 0 - 4 )解得a= -1/3

   所以抛物线解析式为

解法二:设抛物线的解析式为

依题意得:c=4且  解得

 所以  所求的抛物线的解析式为

(2)连接DQ,在Rt△AOB中,

所以AD=AB= 5,AC=AD+CD=3 + 4 = 7,CD = AC - AD = 7 – 5 = 2

因为BD垂直平分PQ,所以PD=QD,PQ⊥BD,所以∠PDB=∠QDB

因为AD=AB,所以∠ABD=∠ADB,∠ABD=∠QDB,所以DQ∥AB

所以∠CQD=∠CBA。∠CDQ=∠CAB,所以△CDQ∽ △CAB

  即

所以AP=AD – DP = AD – DQ=5 –=  

所以t的值是

(3)答对称轴上存在一点M,使MQ+MC的值最小

理由:因为抛物线的对称轴为

所以A(- 3,0),C(4,0)两点关于直线对称

连接AQ交直线于点M,则MQ+MC的值最小

过点Q作QE⊥x轴,于E,所以∠QED=∠BOA=900

   DQ∥AB,∠ BAO=∠QDE,  △DQE ∽△ABO

  即

所以QE=,DE=,所以OE = OD + DE=2+=,所以Q()

设直线AQ的解析式为

  由此得

所以直线AQ的解析式为  联立

由此得  所以M

则:在对称轴上存在点M,使MQ+MC的值最小

 0  398951  398959  398965  398969  398975  398977  398981  398987  398989  398995  399001  399005  399007  399011  399017  399019  399025  399029  399031  399035  399037  399041  399043  399045  399046  399047  399049  399050  399051  399053  399055  399059  399061  399065  399067  399071  399077  399079  399085  399089  399091  399095  399101  399107  399109  399115  399119  399121  399127  399131  399137  399145  447090 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网