摘要:28.如图20.在平面直角坐标系中.四边形OABC是矩形.点B的坐标为(4.3).平行于对角线AC的直线m从原点O出发.沿x轴正方向以每秒1个单位长度的速度运动.设直线m与矩形OABC的两边分别交于点M.N.直线m运动的时间为t(秒). (1) 点A的坐标是 .点C的坐标是 , (2) 当t= 秒或 秒时.MN=AC, (3) 设△OMN的面积为S.求S与t的函数关系式, 中得到的函数S有没有最大值?若有.求出最大值,若没有.要说明理由. (08甘肃白银等9市28题解析)28. 本小题满分12分 解:, ·················································································· 2分 (2) 2.6, ········································································································· 4分 (3) 当0<t≤4时.OM=t. 由△OMN∽△OAC.得. ∴ ON=.S=. ···································· 6分 当4<t<8时. 如图.∵ OD=t.∴ AD= t-4. 方法一: 由△DAM∽△AOC.可得AM=.∴ BM=6-. ···························· 7分 由△BMN∽△BAC.可得BN==8-t.∴ CN=t-4. ·································· 8分 S=矩形OABC的面积-Rt△OAM的面积- Rt△MBN的面积- Rt△NCO的面积 =12--(8-t)(6-)- =. ··························································································· 10分 方法二: 易知四边形ADNC是平行四边形.∴ CN=AD=t-4.BN=8-t.·································· 7分 由△BMN∽△BAC.可得BM==6-.∴ AM=.······ 8分 以下同方法一. (4) 有最大值. 方法一: 当0<t≤4时. ∵ 抛物线S=的开口向上.在对称轴t=0的右边. S随t的增大而增大. ∴ 当t=4时.S可取到最大值=6, ················ 11分 当4<t<8时. ∵ 抛物线S=的开口向下.它的顶点是(4.6).∴ S<6. 综上.当t=4时.S有最大值6. ······································································· 12分 方法二: ∵ S= ∴ 当0<t<8时.画出S与t的函数关系图像.如图所示. ······························ 11分 显然.当t=4时.S有最大值6. ··································································· 12分 说明:只有当第问只回答“有最大值 无其它步骤.可给1分,否则.不给分.
网址:http://m.1010jiajiao.com/timu_id_3990487[举报]
阅读下面的例题:
(2007甘肃白银3市)阅读下边一元二次方程求根公式的两种推导方法:
方法一:教材中方法
方法二:
∵ax2+bx+c=0,
∴4a2x2+4abx+4ac=0,
配方可得:∴(2ax+b)2=b2-4ac.
当b2-4ac≥0时,
2ax+b=±
,
∴2ax=-b±
.
当b2-4ac≥0时,∴x=
.
请回答下列问题:
(1)两种方法有什么异同?你认为哪个方法好?
(2)说说你有什么感想? 查看习题详情和答案>>
(2007甘肃白银3市)阅读下边一元二次方程求根公式的两种推导方法:
方法一:教材中方法
方法二:
∵ax2+bx+c=0,
∴4a2x2+4abx+4ac=0,
配方可得:∴(2ax+b)2=b2-4ac.
当b2-4ac≥0时,
2ax+b=±
| b2-4ac |
∴2ax=-b±
| b2-4ac |
当b2-4ac≥0时,∴x=
-b±
| ||
| 2a |
请回答下列问题:
(1)两种方法有什么异同?你认为哪个方法好?
(2)说说你有什么感想? 查看习题详情和答案>>
阅读下面的例题:
(2007甘肃白银3市)阅读下边一元二次方程求根公式的两种推导方法:
方法一:教材中方法
方法二:
∵ax2+bx+c=0,
∴4a2x2+4abx+4ac=0,
配方可得:∴(2ax+b)2=b2-4ac.
当b2-4ac≥0时,
2ax+b=±
,
∴2ax=-b±
.
当b2-4ac≥0时,∴x=
.
请回答下列问题:
(1)两种方法有什么异同?你认为哪个方法好?
(2)说说你有什么感想?
查看习题详情和答案>>
(2007甘肃白银3市)阅读下边一元二次方程求根公式的两种推导方法:
方法一:教材中方法
方法二:
∵ax2+bx+c=0,
∴4a2x2+4abx+4ac=0,
配方可得:∴(2ax+b)2=b2-4ac.
当b2-4ac≥0时,
2ax+b=±
| b2-4ac |
∴2ax=-b±
| b2-4ac |
当b2-4ac≥0时,∴x=
-b±
| ||
| 2a |
请回答下列问题:
(1)两种方法有什么异同?你认为哪个方法好?
(2)说说你有什么感想?
6、厦深铁路起自福建省厦门市,到广东省深圳市,沿线经过厦门、漳州、潮州、汕头、普宁、汕尾、惠州、深圳等8市.规划里程约550千米,设计时速超过200千米,总投资约为300亿元用科学记数法表示约为
查看习题详情和答案>>
3×1010
元.