6.函数f(x)=$\frac{x}{5π}$-sin(2x+$\frac{π}{6}$)的零点的个数为( )
| A. | 16 | B. | 18 | C. | 19 | D. | 20 |
3.在△ABC中,BC=2,B=60°,若△ABC的面积等于$\frac{\sqrt{3}}{2}$,则AC边长为( )
| A. | $\sqrt{3}$ | B. | 2 | C. | 5 | D. | $\sqrt{5}$ |
1.一个不透明的袋子中装有除颜色外都相同的4个球,其中1个白球,1个红球,2个黄球,从中随机一次取出2个球,则这2个球恰有1个黄球的概率为( )
| A. | $\frac{5}{6}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{6}$ | D. | $\frac{2}{3}$ |
20.下列说法不正确的是( )
| A. | 若“p∧q”为假,则p,q至少有一个是假命题 | |
| B. | 命题“?x∈R,x2-x-1<0”的否定是“?x∈R,x2-x-1≥0” | |
| C. | 设A,B是两个集合,则“A⊆B”是“A∩B=A”的充分不必要条件 | |
| D. | 当α<0时,幂函数y=xα在(0,+∞)上单调递减 |
18.某种产品的广告费用支出x与销售额y之间有如下的对应数据:
(1)画出散点图;并说明销售额y与广告费用支出x之间是正相关还是负相关?
(2)请根据上表提供的数据,求回归直线方程$\widehat{y}$=bx+a;
(3)据此估计广告费用为10时,销售收入y的值.
(参考公式:b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$).
| x | 2 | 4 | 5 | 6 | 8 |
| y | 30 | 40 | 60 | 50 | 70 |
(2)请根据上表提供的数据,求回归直线方程$\widehat{y}$=bx+a;
(3)据此估计广告费用为10时,销售收入y的值.
(参考公式:b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$).
17.设复数z满足$\frac{1+z}{1+i}$=2-i,则|$\frac{1}{z}$|=( )
0 240809 240817 240823 240827 240833 240835 240839 240845 240847 240853 240859 240863 240865 240869 240875 240877 240883 240887 240889 240893 240895 240899 240901 240903 240904 240905 240907 240908 240909 240911 240913 240917 240919 240923 240925 240929 240935 240937 240943 240947 240949 240953 240959 240965 240967 240973 240977 240979 240985 240989 240995 241003 266669
| A. | $\sqrt{5}$ | B. | $\frac{1}{5}$ | C. | $\frac{\sqrt{5}}{5}$ | D. | $\frac{\sqrt{5}}{25}$ |