16.
运行如图所示的程序,输出的结果为( )
| A. | 12 | B. | 10 | C. | 9 | D. | 8 |
15.对某产品1至6月份销售量及其价格进行调查,其售价和销售量之间的一组数据如下表所示:
(1)根据1至5月份的数据,求出y关于x的回归直线方程;
(2)根据(1)的回归方程计算6月份的残差估计值;
(3)预计在今后的销售中,销售量与单价仍然服从(1)中的关系,且该产品的成本是2.5元/件,为获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)
(参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$)(参考数据:$\sum_{i=1}^{5}{x}_{i}{y}_{i}$=392,$\sum_{i=1}^{5}{{x}_{i}}^{2}$=502.5)
| 月份 | 1 | 2 | 3 | 4 | 5 | 6 |
| 单价x(元) | 9 | 9.5 | 10 | 10.5 | 11 | 8 |
| 销售量y(件) | 11 | 10 | 8 | 6 | 5 | 14 |
(2)根据(1)的回归方程计算6月份的残差估计值;
(3)预计在今后的销售中,销售量与单价仍然服从(1)中的关系,且该产品的成本是2.5元/件,为获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)
(参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$)(参考数据:$\sum_{i=1}^{5}{x}_{i}{y}_{i}$=392,$\sum_{i=1}^{5}{{x}_{i}}^{2}$=502.5)
14.设x、y∈R+且$\frac{1}{x}$+$\frac{9}{y}$=1,则x+y的最小值为( )
| A. | 4 | B. | 8 | C. | 16 | D. | 32 |
13.在矩形ABCD中,AB=4,AD=3,若向该矩形内随机投一点P,那么使得△ABP与△ADP的面积都不小于2的概率为( )
| A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{4}{7}$ | D. | $\frac{4}{9}$ |
12.下列命题中,正确的是( )
| A. | 若a>b,c>d,则ac>bc | B. | 若ac>bc,则a>b | ||
| C. | 若$\frac{a}{{c}^{2}}$<$\frac{b}{{c}^{2}}$,则a<b | D. | 若a>b,c>d,则a-c>b-d |
11.若a,b,c为实数,则下列结论正确的是( )
| A. | 若a>b,则ac2>bc2 | B. | 若a<b<0,则a2>ab | C. | 若a<b,则$\frac{1}{a}$$>\frac{1}{b}$ | D. | 若a>b>0,则$\frac{b}{a}$$>\frac{a}{b}$ |
10.已知在数轴上0和3之间任取一实数x,则使“x2-2x<0”的概率为( )
| A. | $\frac{1}{4}$ | B. | $\frac{1}{8}$ | C. | $\frac{2}{3}$ | D. | $\frac{1}{12}$ |
9.已知函数A=$\{x|\frac{1}{4}<{2^x}<16,x∈Z\}$,B={x|x2-3x<0,x∈Z},从集合A中任取一个元素,则这个元素也是集合B中元素的概率为( )
0 240756 240764 240770 240774 240780 240782 240786 240792 240794 240800 240806 240810 240812 240816 240822 240824 240830 240834 240836 240840 240842 240846 240848 240850 240851 240852 240854 240855 240856 240858 240860 240864 240866 240870 240872 240876 240882 240884 240890 240894 240896 240900 240906 240912 240914 240920 240924 240926 240932 240936 240942 240950 266669
| A. | $\frac{1}{5}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{5}$ | D. | $\frac{2}{3}$ |