9.(A组题)已知实数x、y满足|x|≤2,|y|≤1,则任取其中一对x、y的值,能使得x2+y2≤1的概率为( )
| A. | $\frac{π}{12}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{8}$ | D. | $\frac{π}{6}$ |
8.
如图,棱长为$\sqrt{2}$的正四面体ABCD的三个顶点A,B,C分别在空间直角坐标系的坐标轴Ox,Oy,Oz上,则定点D的坐标为( )
| A. | (1,1,1) | B. | $({\sqrt{2},\sqrt{2},\sqrt{2}})$ | C. | $({\sqrt{3},\sqrt{3},\sqrt{3}})$ | D. | (2,2,2) |
7.若直线ax+by+6=0与圆x2+y2+4x-1=0切于点P(-1,2),则ab为( )
| A. | 8 | B. | 2 | C. | -8 | D. | -2 |
6.将函数f(x)=cosx图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向右平移$\frac{π}{6}$个单位后得到函数g(x)的图象,若函数g(x)在区间$[{0,\frac{aπ}{9}}]$与[2aπ,4π]上均单调递增,则实数a的取值范围为( )
| A. | $[{\frac{13}{12},2})$ | B. | $[{\frac{13}{12},\frac{3}{2}}]$ | C. | $[{\frac{7}{6},2})$ | D. | $[{\frac{7}{6},3}]$ |
4.把函数$y=cos2x+\sqrt{3}sin2x$的图象经过变化而得到y=2sin2x的图象,这个变化是( )
| A. | 向左平移$\frac{π}{12}$个单位 | B. | 向右平移$\frac{π}{12}$个单位 | ||
| C. | 向左平移$\frac{π}{6}$个单位 | D. | 向右平移$\frac{π}{6}$个单位 |
3.某中学教务处采用系统抽样方法,从学校高一年级全体1000名学生中抽50名学生做学习状况问卷调查.现将1000名学生从1到1000进行编号.在第一组中随机抽取一个号,如果抽到的是17号,则第8组中应取的号码是( )
| A. | 177 | B. | 417 | C. | 157 | D. | 367 |
2.已知:$x{(x-2)^8}={a_0}+{a_1}(x-1)+{a_2}{(x-1)^2}+…+{a_9}{(x-1)^9}$,则a6=( )
| A. | -28 | B. | -448 | C. | 112 | D. | 448 |
1.从混有3张假钞的10张百元钞票中任意抽出2张,将其中1张放到验钞机上检验发现是假钞,则另一张也是假钞的概率为( )
| A. | $\frac{1}{8}$ | B. | $\frac{2}{9}$ | C. | $\frac{1}{15}$ | D. | $\frac{3}{17}$ |
20.若在定义域内存在实数x0,使得f(x0+1)=f(x0)+f(1)成立,则称函数有“穿越点”x0,在区间(0,5]上任取一个数a,则函数f(x)=lg$\frac{a}{{2}^{x}+1}$在(-∞,+∞)上有“穿越点”的概率为( )
0 240720 240728 240734 240738 240744 240746 240750 240756 240758 240764 240770 240774 240776 240780 240786 240788 240794 240798 240800 240804 240806 240810 240812 240814 240815 240816 240818 240819 240820 240822 240824 240828 240830 240834 240836 240840 240846 240848 240854 240858 240860 240864 240870 240876 240878 240884 240888 240890 240896 240900 240906 240914 266669
| A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{3}{10}$ | D. | $\frac{1}{2}$ |