题目内容
9.(A组题)已知实数x、y满足|x|≤2,|y|≤1,则任取其中一对x、y的值,能使得x2+y2≤1的概率为( )| A. | $\frac{π}{12}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{8}$ | D. | $\frac{π}{6}$ |
分析 画出实数x,y满足|x|<2,|y|<1对应的平面区域,和任取其中x,y,使x2+y2≤1对应的平面区域,分别求出其面积大小,代入几何概型概率公式,即可得到答案
解答
解:在平面坐标系中满足|x|<2,|y|<1的(x,y)点如下图中矩形面积所示:
满足条件x2+y2≤1的(x,y)点如图中阴影部分所示:
∵S矩形=4×2=8,S阴影=π
故任取其中x,y,使x2+y2≤1的概率P=$\frac{{S}_{阴影部分}}{{S}_{矩形}}$=$\frac{π×{1}^{2}}{4×2}=\frac{π}{8}$;
故选:C.
点评 本题考查的知识点是几何概型,其中分别计算出基本事件总数和满足条件的基本事件对应的平面区域的面积是解答本题的关键.
练习册系列答案
相关题目
20.直线x-ysinθ+1=0的倾斜角的取值范围是( )
| A. | $[{\frac{π}{4},\frac{3π}{4}}]$ | B. | $[{0,\frac{π}{4}}]∪[{\frac{3π}{4},π})$ | C. | $[{0,\frac{π}{4}}]$ | D. | $[{\frac{π}{4},\frac{π}{2}})∪({\frac{π}{2},\frac{3π}{4}}]$ |
4.把函数$y=cos2x+\sqrt{3}sin2x$的图象经过变化而得到y=2sin2x的图象,这个变化是( )
| A. | 向左平移$\frac{π}{12}$个单位 | B. | 向右平移$\frac{π}{12}$个单位 | ||
| C. | 向左平移$\frac{π}{6}$个单位 | D. | 向右平移$\frac{π}{6}$个单位 |
14.
如图,AB∩α=B,直线AB与平面α所成的角为75°,点A是直线AB上一定点,动直线AP与平面α交于点P,且满足∠PAB=45°,则点P在平面α内的轨迹是( )
| A. | 双曲线的一支 | B. | 抛物线的一部分 | C. | 圆 | D. | 椭圆 |
18.已知i是虚数单位,若复数z满足:z(1-i)=2,则复数z=( )
| A. | -1-i | B. | 1-i | C. | -1+i | D. | 1+i |