5.若直线y=kx+2与曲线$x=\sqrt{{y^2}+6}$交于不同的两点,那么k的取值范围是( )
| A. | ($-\frac{{\sqrt{15}}}{3},\frac{{\sqrt{15}}}{3}$) | B. | ($0,\frac{{\sqrt{15}}}{3}$) | C. | ($-\frac{{\sqrt{15}}}{3},0$) | D. | ($-\frac{{\sqrt{15}}}{3},-1$) |
4.康杰中学高三数学学习小组开展“学生语文成绩与外语成绩的关系”的课题研究,在全市高三年级学生中随机抽取100名同学的上学期期末语文和外语成绩,按优秀和不优秀分类得结果:语文和外语都优秀的有16人,语文成绩优秀但外语不优秀的有14人,外语成绩优秀但语文不优秀的有10人.
(1)根据以上信息,完成下面2×2列联表:
(2)能否判定在犯错误概率不超过0.001的前提下认为全市高三年级学生的“语文成绩与外语成绩有关系”?
(3)将上述调查所得到的频率视为概率,从全市高三年级学生成绩中,随机抽取3名学生的成绩,记抽取的3名学生成绩中语文、外语两科成绩至少有一科优秀的个数为X,求X的分布列和期望E(X).
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
其中:n=a+b+c+d.
(1)根据以上信息,完成下面2×2列联表:
| 语文优秀 | 语文不优秀 | 总计 | |
| 外语优秀 | 16 | 10 | |
| 外语不优秀 | 14 | ||
| 总计 |
(3)将上述调查所得到的频率视为概率,从全市高三年级学生成绩中,随机抽取3名学生的成绩,记抽取的3名学生成绩中语文、外语两科成绩至少有一科优秀的个数为X,求X的分布列和期望E(X).
| p(K2≥k0) | 0.010 | 0.005 | 0.001 |
| k0 | 6.635 | 7.879 | 10.828 |
其中:n=a+b+c+d.
2.设a,b∈R,则“$log_2^a>log_2^b$”是“2a-b>1”的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
20.已知f(x)=$\frac{1}{x}$,则$\underset{lim}{△x→0}$$\frac{f(2+3△x)-f(2)}{△x}$的值是( )
| A. | $\frac{1}{4}$ | B. | -$\frac{1}{4}$ | C. | $\frac{3}{4}$ | D. | -$\frac{3}{4}$ |
19.
运行如图所示的程序框图,若输出的结果为26,则判断框内的条件可以为( )
0 240677 240685 240691 240695 240701 240703 240707 240713 240715 240721 240727 240731 240733 240737 240743 240745 240751 240755 240757 240761 240763 240767 240769 240771 240772 240773 240775 240776 240777 240779 240781 240785 240787 240791 240793 240797 240803 240805 240811 240815 240817 240821 240827 240833 240835 240841 240845 240847 240853 240857 240863 240871 266669
| A. | k≤5? | B. | k≤4? | C. | k≥4? | D. | k≥5? |