题目内容
19.| A. | k≤5? | B. | k≤4? | C. | k≥4? | D. | k≥5? |
分析 由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.
解答 解:模拟程序的运行,可得
S=0,k=1
S=1,
不满足条件,执行循环体,k=2,S=4
不满足条件,执行循环体,k=3,S=11
不满足条件,执行循环体,k=4,S=26
由题意,此时应用满足条件,退出循环,输出S的值为26,
所以,判断框内的条件可以为k≥4.
故选:C.
点评 本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.
练习册系列答案
相关题目
4.康杰中学高三数学学习小组开展“学生语文成绩与外语成绩的关系”的课题研究,在全市高三年级学生中随机抽取100名同学的上学期期末语文和外语成绩,按优秀和不优秀分类得结果:语文和外语都优秀的有16人,语文成绩优秀但外语不优秀的有14人,外语成绩优秀但语文不优秀的有10人.
(1)根据以上信息,完成下面2×2列联表:
(2)能否判定在犯错误概率不超过0.001的前提下认为全市高三年级学生的“语文成绩与外语成绩有关系”?
(3)将上述调查所得到的频率视为概率,从全市高三年级学生成绩中,随机抽取3名学生的成绩,记抽取的3名学生成绩中语文、外语两科成绩至少有一科优秀的个数为X,求X的分布列和期望E(X).
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
其中:n=a+b+c+d.
(1)根据以上信息,完成下面2×2列联表:
| 语文优秀 | 语文不优秀 | 总计 | |
| 外语优秀 | 16 | 10 | |
| 外语不优秀 | 14 | ||
| 总计 |
(3)将上述调查所得到的频率视为概率,从全市高三年级学生成绩中,随机抽取3名学生的成绩,记抽取的3名学生成绩中语文、外语两科成绩至少有一科优秀的个数为X,求X的分布列和期望E(X).
| p(K2≥k0) | 0.010 | 0.005 | 0.001 |
| k0 | 6.635 | 7.879 | 10.828 |
其中:n=a+b+c+d.