19.已知集合M={x||x|≤1},N={x|2x<1},则M∩N=( )
| A. | [-1,0) | B. | [0,1) | C. | (-∞,0] | D. | (-∞,1] |
18.已知在某项射击测试中,规定每人射击3次,至少2次击中8环以上才能通过测试.若某运动员每次射击击中8环以上的概率为$\frac{2}{3}$,且各次射击相互不影响,则该运动员通过测试的概率为( )
| A. | $\frac{20}{27}$ | B. | $\frac{4}{9}$ | C. | $\frac{8}{27}$ | D. | $\frac{6}{9}$ |
14.计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水库年入流量X(年入流量:一年内上游来水与库区降水之和.单位:亿立方米)都在40以上,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年,将年入流量在以上三段的频率作为相应段的概率,假设各年的年入流量相互独立.
(Ⅰ)求未来3年中,设ξ表示流量超过120的年数,求ξ的分布列及期望;
(Ⅱ)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X限制,并有如下关系:
若某台发电机运行,则该台年利润为5000万元,若某台发电机未运行,则该台年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?
(Ⅰ)求未来3年中,设ξ表示流量超过120的年数,求ξ的分布列及期望;
(Ⅱ)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X限制,并有如下关系:
| 年入流量X | 40<X<80 | 80≤X≤120 | X>120 |
| 发电机最多可运行台数 | 1 | 2 | 3 |
12.设曲线y=2x-x3在点(1,1)处的切线为l,点P(m,n)在l上,mn>0,则$\frac{1}{m}$+$\frac{4}{n}$的最小值为( )
0 240605 240613 240619 240623 240629 240631 240635 240641 240643 240649 240655 240659 240661 240665 240671 240673 240679 240683 240685 240689 240691 240695 240697 240699 240700 240701 240703 240704 240705 240707 240709 240713 240715 240719 240721 240725 240731 240733 240739 240743 240745 240749 240755 240761 240763 240769 240773 240775 240781 240785 240791 240799 266669
| A. | 2 | B. | 3 | C. | $\frac{9}{4}$ | D. | $\frac{9}{2}$ |