10.某工厂为制定下一阶段生产某种产品的方案,工厂技术部门开展了两项统计,其一是对该厂48名师傅生产的产品精度情况进行了调查,得到如下的2×2列联表1(单位:个);其二是对某师傅加工零件个数n1(单位:个)和加工时间t1(单位:小时,i-1,2,…6)作了6次试验,并对获得的数据作了初步处理,得到下面的散点图及一些统计量的值如表2.
表1:48名师傅生产的产品精度统计表(单位:个)
类别达到精品级未达到精品级总计
高级技工22628
中级技工101020
总计321648
表2:
 $\overline{n}$=$\frac{1}{6}$$\sum_{i=1}^{6}{n}_{i}$  $\overline{t}$=$\frac{1}{6}$$\sum_{i=1}^{6}{t}_{i}$$\sum_{i=1}^{6}{n}_{i}$ 2$\sum_{i=1}^{6}{t}_{i}$ 2 $\sum_{i=1}^{6}{n}_{i}{t}_{i}$$\sum_{i=1}^{6}$(ni-$\overline{n}$)2 $\sum_{i=1}^{6}$(ti-$\overline{t}$)2  $\sum_{i=1}^{6}$(ni-$\overline{n}$)(ti-$\overline{t}$) 
4.54.125139109.562112.7517.57.46811.375
(1)判断是否有95%的把握人物产品达到精品级与师傅的职称有关?说明你的理由;
(2)根据散点图判断t与n是否具有线性相关关系?若具有,依据表中数据求出t关于n的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$,并预测该师傅加工10个零件需要多少时间?
附:(1)参考临界值有:
参考公式:K2=$\frac{m(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中m=a+b+c+d.
(2)对于一组数据(x1,y1),(x2,y2),…,(xn,yn),其回归线$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$的斜率和截距的最小二乘估计分别为$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n\overline{{x}^{2}}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.
 0  240363  240371  240377  240381  240387  240389  240393  240399  240401  240407  240413  240417  240419  240423  240429  240431  240437  240441  240443  240447  240449  240453  240455  240457  240458  240459  240461  240462  240463  240465  240467  240471  240473  240477  240479  240483  240489  240491  240497  240501  240503  240507  240513  240519  240521  240527  240531  240533  240539  240543  240549  240557  266669 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网