4.下列各点中,与点$(2,\frac{π}{6})$在极坐标系中表示同一个点的是( )
| A. | $(2,\frac{5π}{6})$ | B. | $(2,-\frac{π}{6})$ | C. | $(1,\frac{π}{6})$ | D. | $(2,\frac{13π}{6})$ |
3.下列各式正确的是( )
| A. | arctan(-1)=$\frac{3π}{4}$ | B. | arctan($\frac{1}{2}$)=$\frac{π}{6}$ | C. | arcsin(-$\frac{1}{2}$)=-$\frac{π}{6}$ | D. | arccos(-$\frac{1}{2}$)=-$\frac{π}{3}$ |
2.某校为了解高二年级不同性别的学生对取消艺术课的态度(支持或反对)进行了如下的调查研究.全年级共有1350人,男女生比例为8:7,现按分层抽样方法抽取若干名学生,每人被抽到的概率均为$\frac{1}{9}$,通过对被抽取学生的问卷调查,得到如下2×2列联表:
(1)完成下列联表,并判断能否有99%的把握认为态度与性别有关?
(2)若某班有6名男生被抽到,其中2人支持,4人反对;有4名女生被抽到,其中2人支持,2人反对,现从这10人中随机抽取一男一女进一步调查原因.求其中恰有一人支持一人反对的概率.
参考公式:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+c)(b+d)(a+b)(c+d)}$
| 支持 | 反对 | 总计 | |
| 男生 | 30 | ||
| 女生 | 25 | ||
| 总计 |
(2)若某班有6名男生被抽到,其中2人支持,4人反对;有4名女生被抽到,其中2人支持,2人反对,现从这10人中随机抽取一男一女进一步调查原因.求其中恰有一人支持一人反对的概率.
参考公式:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+c)(b+d)(a+b)(c+d)}$
| P(K2≥k0) | 0.10 | 0.050 | 0.010 | 0.005 | 0.001 |
| k0 | 2.7069% | 3.841 | 6.635 | 7.879 | 10.828 |
1.已知集合A={x|x2+4≤5x,x∈R},B={(x,y)|y=3x+2,x∈R},则A∩B=( )
| A. | (2,4] | B. | (2,+∞) | C. | [2,4] | D. | ∅ |
19.22015被9除所得的余数是( )
| A. | 4 | B. | 5 | C. | 7 | D. | 8 |
17.为了传承经典,促进学生课外阅读,某校从高中年级和初中年级各随机抽取100名学生进行有关对中国四大名著常识了解的竞赛.图1和图2分别是高中年级和初中年级参加竞赛的学生成绩按照[40,50),[50,60),[60,70),[70,80)分组,得到的频率分布直方图.

(1)分别计算参加这次知识竞赛的两个学段的学生的平均成绩;
(2)规定竞赛成绩达到[75,80)为优秀,经统计初中年级有3名男同学,2名女同学达到优秀,现从上述5人中任选两人参加复试,求选中的2人恰好都为女生的概率;
(3)完成下列2×2的列联表,并回答是否有99%的把握认为“两个学段的学生对四大名著的了解有差异”?
附:K2=$\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$
临界值表:
0 240115 240123 240129 240133 240139 240141 240145 240151 240153 240159 240165 240169 240171 240175 240181 240183 240189 240193 240195 240199 240201 240205 240207 240209 240210 240211 240213 240214 240215 240217 240219 240223 240225 240229 240231 240235 240241 240243 240249 240253 240255 240259 240265 240271 240273 240279 240283 240285 240291 240295 240301 240309 266669
(1)分别计算参加这次知识竞赛的两个学段的学生的平均成绩;
(2)规定竞赛成绩达到[75,80)为优秀,经统计初中年级有3名男同学,2名女同学达到优秀,现从上述5人中任选两人参加复试,求选中的2人恰好都为女生的概率;
(3)完成下列2×2的列联表,并回答是否有99%的把握认为“两个学段的学生对四大名著的了解有差异”?
| 成绩小于60分人数 | 成绩不小于60分人数 | 合计 | |
| 初中年级 | |||
| 高中年级 | |||
| 合计 |
临界值表:
| P(K2≥k0) | 0.10 | 0.05 | 0.01 |
| k0 | 2.706 | 3.841 | 6.635 |