18.在某次试验中,有两个试验数据x,y统计的结果如下面的表格
(1)求出y对x的回归直线方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$中回归系数$\stackrel{∧}{a}$,$\stackrel{∧}{b}$;
(2)估计当x为10时$\stackrel{∧}{y}$的值是多少?
(附:在线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$中,$\stackrel{∧}{b}$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{{{\sum_{i=1}^n{x_i^2-n\overline x}}^2}}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$,其中$\overline{x}$,$\overline{y}$为样本平均值.
| 序号 | x | y | x2 | xy |
| 1 | 1 | 2 | 1 | 2 |
| 2 | 2 | 3 | 4 | 6 |
| 3 | 3 | 4 | 9 | 12 |
| 4 | 4 | 4 | 16 | 16 |
| 5 | 5 | 5 | 25 | 25 |
| ∑ | 15 | 18 | 55 | 61 |
(2)估计当x为10时$\stackrel{∧}{y}$的值是多少?
(附:在线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$中,$\stackrel{∧}{b}$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{{{\sum_{i=1}^n{x_i^2-n\overline x}}^2}}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$,其中$\overline{x}$,$\overline{y}$为样本平均值.
17.连续抛掷两枚骰子,第一枚骰子和第二枚骰子点数之差是一个随机变量X,则“X>4”表示的实验结果是( )
| A. | 第一枚6点,第二枚2点 | B. | 第一枚5点,第二枚1点 | ||
| C. | 第一枚1点,第二枚6点 | D. | 第一枚6点,第二枚1点 |
14.y=sin($\frac{π}{3}$-2x)单调增区间为( )
0 240083 240091 240097 240101 240107 240109 240113 240119 240121 240127 240133 240137 240139 240143 240149 240151 240157 240161 240163 240167 240169 240173 240175 240177 240178 240179 240181 240182 240183 240185 240187 240191 240193 240197 240199 240203 240209 240211 240217 240221 240223 240227 240233 240239 240241 240247 240251 240253 240259 240263 240269 240277 266669
| A. | [kπ-$\frac{π}{12}$,kπ+$\frac{5}{12}$π],(k∈Z) | B. | [kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],(k∈Z) | ||
| C. | [kπ+$\frac{5}{12}$π,kπ+$\frac{11}{12}$π],(k∈Z) | D. | [kπ+$\frac{π}{6}$,kπ+$\frac{2}{3}$π],(k∈Z) |