8.为调查了解某省属师范大学师范类毕业生参加工作后,从事的工作与教育是否有关的情况,该校随机调查了该校80位性别不同的2016年师范类毕业大学生,得到具体数据如表:
(1)能否在犯错误的概率不超过5%的前提下,认为“师范类毕业生从事与教育有关的工作与性别有关”?
(2)求这80位师范类毕业生从事与教育有关工作的频率;
(3)以(2)中的频率作为概率.该校近几年毕业的2000名师范类大学生中随机选取4名,记这4名毕业生从事与教育有关的人数为X,求X的数学期望E(X).
参考公式:k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$(n=a+b+c+d).
附表:
| 与教育有关 | 与教育无关 | 合计 | |
| 男 | 30 | 10 | 40 |
| 女 | 35 | 5 | 40 |
| 合计 | 65 | 15 | 80 |
(2)求这80位师范类毕业生从事与教育有关工作的频率;
(3)以(2)中的频率作为概率.该校近几年毕业的2000名师范类大学生中随机选取4名,记这4名毕业生从事与教育有关的人数为X,求X的数学期望E(X).
参考公式:k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$(n=a+b+c+d).
附表:
| P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
| k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.023 | 6.635 |
7.已知二项分布ξ~B(4,$\frac{1}{2}$),则该分布列的方差Dξ值为( )
| A. | 4 | B. | 3 | C. | 1 | D. | 2 |
5.函数f(x)=sin(ωx+φ)+$\sqrt{3}cos({ωx+φ})({ω>0})$的图象过(1,2),若f(x)相邻的零点为x1,x2且满足|x1-x2|=6,则f(x)的单调增区间为( )
| A. | [-2+12k,4+12k](k∈Z) | B. | [-5+12k,1+12k](k∈Z) | C. | [1+12k,7+12k](k∈Z) | D. | [-2+6k,1+6k](k∈Z) |
2.已知函数$f(x)=\left\{\begin{array}{l}lnx,x>0\\ ax+2,x≤0\end{array}\right.$(a∈R),若函数y=|f(x)|-a有三个零点,则实数a的取值范围是( )
| A. | a≥-2 | B. | a>2 | C. | 0<a<1 | D. | 1≤a<2 |
1.把8个相同的小球全部放入编号为1,2,3,4的四个盒中,则不同的放法数为( )
| A. | 35 | B. | 70 | C. | 165 | D. | 1860 |
20.平面直角坐标系中,已知O为坐标原点,点A、B的坐标分别为(1,1)、(-3,3).若动点P满足$\overrightarrow{OP}=λ\overrightarrow{OA}+μ\overrightarrow{OB}$,其中λ、μ∈R,且λ+μ=1,则点P的轨迹方程为( )
| A. | x-y=0 | B. | x+y=0 | C. | x+2y-3=0 | D. | (x+1)2+(y-2)2=5 |
19.已知i是虚数单位,复数$\frac{z}{2-3i}$对应于复平面内一点(0,1),则|z|=( )
0 239741 239749 239755 239759 239765 239767 239771 239777 239779 239785 239791 239795 239797 239801 239807 239809 239815 239819 239821 239825 239827 239831 239833 239835 239836 239837 239839 239840 239841 239843 239845 239849 239851 239855 239857 239861 239867 239869 239875 239879 239881 239885 239891 239897 239899 239905 239909 239911 239917 239921 239927 239935 266669
| A. | $\sqrt{13}$ | B. | 4 | C. | 5 | D. | $4\sqrt{2}$ |