9.已知中心在原点的双曲线,其右焦点与圆x2-4x+y2+1=0的圆心重合,且渐近线与该圆相离,则双曲线离心率的取值范围是( )
| A. | (1,$\frac{2\sqrt{3}}{3}$) | B. | (1,2) | C. | ($\frac{2\sqrt{3}}{3}$,+∞) | D. | (2,+∞) |
8.已知函数f(x)=sin(x+φ)-$\sqrt{3}$cos(x+φ)(|φ|<$\frac{π}{2}$)的图象关于直线x=π对称,则cos2φ=( )
| A. | -$\frac{\sqrt{3}}{2}$ | B. | $-\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
7.已知命题p1:若sinx≠0,则sinx+$\frac{1}{sinx}$≥2恒成立;p2:x+y=0的充要条件是$\frac{x}{y}$=-1,则下列命题为真命题的是( )
| A. | p1∧p2 | B. | p1∨p2 | C. | p1∧(¬p2) | D. | (¬p1)∨p2 |
6.若变量x,y满足约束条件$\left\{\begin{array}{l}{x≥0}\\{x+y≤1}\\{x-y≤1}\end{array}\right.$,则$\frac{y}{x+2}$的最大值为( )
| A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | 1 | D. | 2 |
5.现有A,B两门选修课供甲、乙、丙三人随机选择,每人必须且只能选其中一门,则甲乙两人都选A选修课的概率是( )
| A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
3.复数$\frac{1-i}{3+4i}$(其中i是虚数单位)在复平面内对应的点所在的象限为( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
2.已知集合M={x|y=$\sqrt{1-3x}$},集合N={x|x2-1<0},则M∩N=( )
| A. | {x|-1<x≤$\frac{1}{3}$} | B. | {x|x≥$\frac{1}{3}$} | C. | {x|x≤$\frac{1}{3}$} | D. | {x|$\frac{1}{3}$≤x<1} |
20.椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的中心在原点,F1,F2分别为左、右焦点,A,B分别是椭圆的上顶点和右顶点,P是椭圆上一点,且PF1⊥x轴,PF2∥AB,则此椭圆的离心率等于( )
0 239195 239203 239209 239213 239219 239221 239225 239231 239233 239239 239245 239249 239251 239255 239261 239263 239269 239273 239275 239279 239281 239285 239287 239289 239290 239291 239293 239294 239295 239297 239299 239303 239305 239309 239311 239315 239321 239323 239329 239333 239335 239339 239345 239351 239353 239359 239363 239365 239371 239375 239381 239389 266669
| A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{{\sqrt{2}}}{2}$ | D. | $\frac{{\sqrt{5}}}{5}$ |