题目内容
2.已知集合M={x|y=$\sqrt{1-3x}$},集合N={x|x2-1<0},则M∩N=( )| A. | {x|-1<x≤$\frac{1}{3}$} | B. | {x|x≥$\frac{1}{3}$} | C. | {x|x≤$\frac{1}{3}$} | D. | {x|$\frac{1}{3}$≤x<1} |
分析 分别求出关于M、N的不等式,求出M、N的交集即可.
解答 解:M={x|y=$\sqrt{1-3x}$}={x|x≤$\frac{1}{3}$},
集合N={x|x2-1<0}={x|-1<x<1},
则M∩N={x|-1<x≤$\frac{1}{3}$},
故选:A.
点评 本题考查了集合的运算,二次根式的性质以及解不等式问题,
练习册系列答案
相关题目
10.“共享单车”的出现,为我们提供了一种新型的交通方式.某机构为了调查人们对此种交通方式的满意度,从交通拥堵不严重的A城市和交通拥堵严重的B城市分别随机调查了20个用户,得到了一个用户满意度评分的样本,并绘制出茎叶图如图:

(Ⅰ)根据茎叶图,比较两城市满意度评分的平均值和方差(不要求计算出具体值,得出结论即可);
(Ⅱ)若得分不低于80分,则认为该用户对此种交通方式“认可”,否则认为该用户对此种交通方式“不认可”,请根据此样本完成下列2×2列联表,并据此样本分析你是否有95%的把握认为城市拥堵与认可共享单车有关.
(参考公式:${Χ^2}=\frac{{n{{({n_{11}}{n_{22}}-{n_{12}}{n_{21}})}^2}}}{{{n_{1+}}{n_{2+}}{n_{+1}}{n_{+2}}}}$)
(Ⅲ)在A和B两个城市满意度在90分以上的用户中任取2户,求来自不同城市的概率.
(Ⅰ)根据茎叶图,比较两城市满意度评分的平均值和方差(不要求计算出具体值,得出结论即可);
(Ⅱ)若得分不低于80分,则认为该用户对此种交通方式“认可”,否则认为该用户对此种交通方式“不认可”,请根据此样本完成下列2×2列联表,并据此样本分析你是否有95%的把握认为城市拥堵与认可共享单车有关.
| 认可 | 不认可 | 合计 | |
| A城市 | |||
| B城市 | |||
| 合计 |
| P(Χ2≥k) | 0.05 | 0.010 |
| k | 3.841 | 6.635 |
(Ⅲ)在A和B两个城市满意度在90分以上的用户中任取2户,求来自不同城市的概率.
7.已知命题p1:若sinx≠0,则sinx+$\frac{1}{sinx}$≥2恒成立;p2:x+y=0的充要条件是$\frac{x}{y}$=-1,则下列命题为真命题的是( )
| A. | p1∧p2 | B. | p1∨p2 | C. | p1∧(¬p2) | D. | (¬p1)∨p2 |
14.已知角α的顶点与坐标原点重合,始边与x轴的非负半轴重合,终边经过点P(1,-2),则sin2α=( )
| A. | $-\frac{4}{5}$ | B. | $-\frac{3}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{4}{5}$ |
5.函数y=2xex的一个原函数为( )
| A. | 2xex(1+ln2) | B. | $\frac{{2}^{x}{e}^{x}}{(1+ln2)}$ | C. | 2exln2 | D. | $\frac{2{e}^{x}}{ln2}$ |