10.已知i为虚数单位,则z=$\frac{1+2{i}^{3}}{2+i}$的值为( )
| A. | 0 | B. | i | C. | -i | D. | 1+i |
8.给定下列四个命题:
命题p:当x>0时,不等式lnx≤x-1与lnx≥1-$\frac{1}{x}$等价;
命题q:不等式ex≥x+1与ln(x+1)≤x等价;
命题r:“b2-4ac≥0”是“函数f(x)=$\frac{1}{3}$ax3+$\frac{1}{2}$bx2+cx+d(a≠0)有极值点”的充要条件;
命题s:若对任意的x$∈(0,\frac{π}{2})$,不等式a<$\frac{sinx}{x}$恒成立,则a≤$\frac{2}{π}$.
其中为假命题的是( )
命题p:当x>0时,不等式lnx≤x-1与lnx≥1-$\frac{1}{x}$等价;
命题q:不等式ex≥x+1与ln(x+1)≤x等价;
命题r:“b2-4ac≥0”是“函数f(x)=$\frac{1}{3}$ax3+$\frac{1}{2}$bx2+cx+d(a≠0)有极值点”的充要条件;
命题s:若对任意的x$∈(0,\frac{π}{2})$,不等式a<$\frac{sinx}{x}$恒成立,则a≤$\frac{2}{π}$.
其中为假命题的是( )
| A. | (¬s)∧¬p | B. | (¬q)∧s | C. | (¬r)∧p | D. | ¬(q∧p) |
7.已知命题P:在三角形ABC中,若A>B,则sinA>sinB;
命题Q:若随机变量X服从正态分布N(1,σ2),且X在(0,1)内取值的概率为0.4,
则X在(0,2)内取值的概率为0.8,下列命题中正确的是( )
命题Q:若随机变量X服从正态分布N(1,σ2),且X在(0,1)内取值的概率为0.4,
则X在(0,2)内取值的概率为0.8,下列命题中正确的是( )
| A. | P∧Q | B. | ¬P∧Q | C. | P∧¬Q | D. | ¬P∧¬Q |
6.设锐角α终边上一点P的坐标是(3cosθ,sinθ),则函数y=θ-α(0<θ<$\frac{π}{2}$)的最大值是( )
| A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |
3.已知圆C的方程为x2+y2=16,直线l:x+y-8=0,点P是直线l上的一动点,过P做圆C的两条切线,切点分别为A,B,当四边形PAOB的面积最小时,直线AB的方程为( )
0 225280 225288 225294 225298 225304 225306 225310 225316 225318 225324 225330 225334 225336 225340 225346 225348 225354 225358 225360 225364 225366 225370 225372 225374 225375 225376 225378 225379 225380 225382 225384 225388 225390 225394 225396 225400 225406 225408 225414 225418 225420 225424 225430 225436 225438 225444 225448 225450 225456 225460 225466 225474 266669
| A. | x+y=4 | B. | 3x+4y=4 | C. | 2x+3y=4 | D. | x+y=1 |