某校高三2班有48名学生进行了一场投篮测试,其中男生28人,女生20人.为了了解其投篮成绩,甲、乙两人分别对全班的学生进行编号(1~48号),并以不同的方法进行数据抽样,其中一人用的是系统抽样,另一人用的是分层抽样.若此次投篮考试的成绩大于或等于80分视为优秀,小于80分视为不优秀,以下是甲、乙两人分别抽取的样本数据:
编号 性别 投篮成绩
 3 90
7 60
11 75
15 80
19 85
23 80
27 95
31 80
35 80
39 60
43 75
47 55
甲抽取的样本数据                                                              
编号 性别 投篮成绩
 1 95
8 85
10 85
17 80
23 60
24 90
27 80
31 80
35 65
37 35
41 60
46 75
乙抽取的样本数据      
(Ⅰ)从甲抽取的样本数据中任取两名同学的投篮成绩,记“抽到投篮成绩优秀”的人数为X,求X的分布列和数学期望;
(Ⅱ)请你根据乙抽取的样本数据完成下列2×2列联表,判断是否有95%以上的把握认为投篮成绩和性别有关?
  优秀 非优秀 合计
     
     
合计     12
(Ⅲ)判断甲、乙各用何种抽样方法,并根据(Ⅱ)的结论判断哪种抽样方法更优?说明理由.
下面的临界值表供参考:
0.15 0.10 0.05 0.010 0.005 0.001
2.072 2.706 3.841 6.635 7.879 10.828
(参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n-a+b+c+d)
 0  212116  212124  212130  212134  212140  212142  212146  212152  212154  212160  212166  212170  212172  212176  212182  212184  212190  212194  212196  212200  212202  212206  212208  212210  212211  212212  212214  212215  212216  212218  212220  212224  212226  212230  212232  212236  212242  212244  212250  212254  212256  212260  212266  212272  212274  212280  212284  212286  212292  212296  212302  212310  266669 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网