搜索
若f(x)=x
4
-4x
3
+10x
2
-27,则方程f(x)=0在[2,4]上的根的个数为
个.
已知x
1
、x
2
是函数f(x)=
1
3
x
2
+
1
2
ax
2
+2bx(a,b∈R)的两个极值点,且x
1
∈(0,1),x
2
∈(1,2),则4a+3b的取值范围是( )
A、(-9,-4)
B、(-8,-4)
C、(-9,-8)
D、(-15,-4)
S
n
是数列{b
n
}的前n项和,且有S
n
=2+
2(n-1)
n
b
n
,则数列{b
n
}的通项公式为
.
设函数f(x)=x
2
+ax+b,点(a,b)为函数y=
5-2x
x-2
的对称中心,设数列{a
n
},{b
n
}满足4a
n+1
=f(a
n
)+2a
n
+2(n∈N
*
),a
1
=6,且b
n
=
1
a
n
+4
,{b
n
}的前n项和为S
n
.
(1)求a,b的值;
(2)求证:S
n
<
1
6
;
(3)求证:a
n
+2≥2
2
n-4
+2
.
已知直线l过圆(x+4)
2
+y
2
=16的圆心C且垂直与x轴,点F的坐标是(-6,0),点G是圆上任意一点.
(1)若直线FG与直线l相交 于点T,且G为线段FT的中点,求直线FG被圆C所截得的弦长;
(2)过点F人作两条互相垂直的弦,设其弦长为m.n,求m+n的最大值;
(3)在平面上是否存在定点P,使得对圆C上任意的点G,都有|GP|=2|GF|?若存在,求出点P的坐标;若存在,请说明理由.
某几何体的三视图如图所示,且该几何体的体积是
3
2
,则正视图中的x的值是( )
A、
3
2
B、
9
2
C、2
D、3
如图所示,在四面体P-ABC中,已知PA=BC=6,PC=AB=10,AC=8,PB=2
34
,F是线段PB上一点,CF=
15
17
34
,点E在线段AB上,且EF⊥PB.
(1)证明:PB⊥平面CEF;
(2)求二面角B-CE-F的正切值.
如图所示的三视图,其体积是
.
已知函数f(x)=ax
2
-4x+2,函数g(x)=(
1
3
)
f(x)
(1)若f(2-x)=f(2+x),求f(x)的解析式;
(2)若g(x)有最大值9,求a的值,并求出g(x)的值域;
(3)已知a≤1,若函数y=f(x)-log
2
x
8
在区间[1,2]内有且只有一个零点,试确定实数a的取值范围.
设函数f(x)=
2sinx,0≤x≤π
x
2
,x<0
,则函数y=f[f(x)]-1的零点个数是
.
0
204180
204188
204194
204198
204204
204206
204210
204216
204218
204224
204230
204234
204236
204240
204246
204248
204254
204258
204260
204264
204266
204270
204272
204274
204275
204276
204278
204279
204280
204282
204284
204288
204290
204294
204296
204300
204306
204308
204314
204318
204320
204324
204330
204336
204338
204344
204348
204350
204356
204360
204366
204374
266669
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案