设函数f(x)(x∈R)的导函数为f′(x),满足f′(x)>f(x),则当a>0时,f(a)与eaf(0)的大小关系为( )
| A、f(a)>eaf(0) |
| B、f(a)<eaf(0) |
| C、f(a)=eaf(0) |
| D、不能确定 |
已知函数f(x)=
x3-
x2+x,则f′(1)的值为( )
| 1 |
| 3 |
| 1 |
| 2 |
| A、0 | B、1 | C、2 | D、3 |
| A、f′(2)<f′(3)<f(3)-f(2) |
| B、f′(3)<f(3)-f(2)<f′(2) |
| C、f′(3)<f′(2)<f(3)-f(2) |
| D、f(3)-f(2)<f′(2)<f′(3) |
定义在R上的函数f(x)满足f(x+4)-f(x)=0,且已知x∈(0,4]时,f(x)=
,则函数g(x)=5f(x)-x零点个数为( )
|
| A、3 | B、4 | C、5 | D、6 |
设曲线y=ax3在点(1,a)处的切线与直线6x-y+2=0平行,则a=( )
| A、2 | ||
| B、-2 | ||
C、
| ||
D、-
|