| π |
| 2 |
A、f(x)=2sin(2x-
| ||||
B、f(x)=2sin(2x+
| ||||
C、f(x)=2sin(
| ||||
D、f(x)=2sin(
|
已知Ω={(x,y)||x|≤1,|y|≤1},A是由直线y=x与曲线y=x3围成的封闭区域,用随机模拟的方法求A的面积时,先产生[0,1]上的两组均匀随机数,x1,x2,…,xN和y1,y2,…,yN,由此得N个点(xi,yi)(i=1,2,3,…,N),据统计满足xi3≤yi≤xi(i=1,2,3,…,N)的点数是N1,由此可得区域A的面积的近似值是( )
A、
| ||
B、
| ||
C、
| ||
D、
|
若两直线y=x+2k与y=2x+k+1的交点在圆x2+y2=4上,则k的值是( )
A、-
| ||
B、-
| ||
C、-
| ||
| D、-2或2 |
已知l,m是两条不同的直线,α,β是两个不同的平面,则在下列条件中,一定能得到l⊥m的是( )
| A、α∩β=l,m与α,β所成角相等 |
| B、α⊥β,l⊥α,m∥β |
| C、l,m与平面α所成角之和为90° |
| D、α∥β,l⊥α,m∥β |