题目内容

在△ABC中,a,b,c分别是∠A、∠B、∠C的对边,a,b,c满足b2=a2+c2-ac若b=2
3
,则△ABC面积的最大值为
 
考点:余弦定理,正弦定理
专题:计算题,解三角形
分析:由b与cosB的值,利用余弦定理列出关系式,利用基本不等式变形求出ac的最大值,利用三角形的面积公式表示出三角形ABC的面积,将ac的最大值代入即可求出三角形ABC面积的最大值.
解答: 解:∵b2=a2+c2-ac,即a2+c2-b2=ac,
∴cosB=
a2+c2-b2
2ac
=
1
2

∵B为三角形的内角,
∴B=
π
3
;sinB=
3
2

∵b=2
3
,cosB=
1
2

∴由余弦定理得:12=b2=a2+c2-ac≥ac,
∴S△ABC=
1
2
acsinB=
3
ac
4
≤3
3

则△ABC面积的最大值为3
3
点评:此题考查了余弦定理,三角形的面积公式,基本不等式的运用,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网